CHEKANOV-TYPE THEOREM FOR SPHERIZED COTANGENT BUNDLES

PETYA PUSHKAR

ABSTRACT. We generalise a Chekanov theorem to the space of cooriented contact elements.

Introduction

1. Chekanov-type theorem for sperization of a cotangent bundle

- 1.1. Contact structure on ST^* . We recall standard notions from contact geometry [AG]. Let B be a smooth manifold. Denote by 0_B the zero section of the cotangent bundle T^*B . The spherisation ST^*B of its cotangent bundle T^*B is a quotient space under the natural free action of a multiplicative group of positive real numbers \mathbb{R}_+ on $T^*B \setminus 0_B$, a positive number a transform a pair (q, p) $(q \in B, p \in T_q^*B)$ into the pair (q, ap). The space ST^*B is a smooth manifold of the dimension $2 \dim B 1$ and it carries a natural cooriented contact structure ξ defined as follows. Consider the Liouville 1-form $\lambda = pdq$ on T^*B , it defines a cooriented (by λ itself) hyperplane field $\lambda = 0$ on $T^*B \setminus 0_B$. That cooriented hyperplane field is invariant with respect to the action of \mathbb{R}_+ and it is tangent to orbits of the action. Hence the projection of that hyperplane field to ST^*B is a cooriented hyperplane field on ST^*B and it turns out to be a contact structure. We remark here, that there is no natural choice of a contact form on ST^*B .
- 1.2. Critical points and critical values of Legendrian manifolds in $J^1(B)$. We say that a point x of a Legendrian manifold is a critical point of Λ if it projects to a zero section 0_B under the natural projection $J^1(B) \to T^*B$. We say that a number a is a critical value of Λ if a equals to the value of u-coordinate of a critical point of Λ .
- 1.3. Legendrian manifolds. The following notion generalise a notion of regular level set of a function on a manifold. Let $c \in \mathbb{R}$. Suppose that Λ is transverse to $T^*B \times c \subset T^*B \times \mathbb{R} = J^1(B)$. Note that it implies that c is not a critical value of Λ . Consider a manifold $L^c = \Lambda \cap T^*B \times c$. The intersection of L^c with $0_B \times c$ is empty and the restriction of natural

This study was carried out within The National Research University Higher School of Economics Academic Fund Program in 2012-2013, research grant No.11-01-0059.

projection $(T^*B \setminus 0_B) \times c \to ST^*B$ to L^c is a legendrian immersion. We denote the image of L^c by Λ^c and we say in that situation that Λ^c is a c-reduction of Λ .

1.4. Legendrian manifolds and generating families. Let us recall firstly the definition of generating family in the space of 1-jets of a function. Let B be a manifold, consider the space $J^1(B) = T^*B \times \mathbb{R}$ of one jets of functions on B. The space $J^1(B)$ is a contact manifold with the canonical contact structure given by the form $du - \lambda$, where λ is (a lift of) Liouville form on T^*B , u is the coordinate on the factor \mathbb{R} . A smooth bundle $E \to B$ and a generic function $F \colon E \to \mathbb{R}$ generates a (immersed) Legendrian submanifold $\Lambda_F \subset J^1(B)$ as follows. Consider a fiber of the bundle $E \to \mathbb{R}$, and a critical point of the restriction of the function F to this fiber. For a sufficiently generic function F the set C_F consisting of all such points is a smooth submanifold of the total space E (the genericity condition is that the equation $d_w F = 0$, where w is a local coordinate on a fiber of $E \to B$, satisfies the condition of the implicit function theorem). At any point z of C_F the differential $d_BF(z)$ of the function F along the base B is well defined. The rule $z \mapsto (z, d_B F(z), F(z))$ defines an immersion $l_F : C_F \to J^1(B)$ and its image is a Legendrian manifold Λ_F under definition. For a generating family F in a local trivialization $B \times W$ of $E \Lambda_F$ is given by the formula:

$$\Lambda_F = \{(q, p, u) | \exists w_0 F_w(q, w_0) = 0, p = F_q(q, w_0), u = F(q, w_0) \},\$$

where q, p are coordinates on T^*B .

Now we define a Legendrian (immersed) submanifold L_F in the space ST^*B starting from a smooth bundle $\pi \colon E \to B$ and a generic function $F \colon E \to \mathbb{R}$. For a point $b \in B$ we denote by $C_F^0(b)$ the zero level of the restriction of the function F to C_F . Genericity conditions are the following $-C_F$ is a manifold in a neighborhood of C_F^0 and 0 is a regular value of C_F . Consider a map $C_F^0 \to ST^*B$, $z \mapsto (z, [d_BF(z)])$. That map is well defined since for $z \in C_F^0$ $d_BF(z) \neq 0$. Moreover, that map is a legendrian immersion and we denote its image by L_F . We will be interested in embedded Legendrian manifolds only.

We remark here that if F is a generating function for a manifold $\Lambda_F \subset J^1(B)$ then F is a generating function for a manifold $L_F \subset ST^*B$ if and only if Λ_F is transversal to the hypersurface $\{u=0\}$ in $J^1(B)$. The last condition is equivalent to the condition of emptiness ???

Stabilization

Example

1.5. Legendrian isotopy lifting.

Lemma 1.1. Let B be a closed manifold and $c \in \mathbb{R}$. Consider a compact Legendrian manifold $\Lambda \subset J^1(B)$ such that its c-reduction Λ^c is well defined and Λ^c is an embedded manifold. Let $L_{t,t\in[0,1]}$ be a legendrian isotopy of $\Lambda^c = L_0$. Than there exists a legendrian isotopy

 $\Lambda_{t,t\in[0,1]}, \Lambda_0 = \Lambda$ such that for any $t\in[0,1]$ its c-reduction is defined and $\Lambda_t^c = L_t$.

Proof. It is sufficient to prove the statement of lemma for c=0. Consider the legendrian isotopy L_t . By isotopy extension theorem there exists a contact flow $\varphi_{t\in[0,1]}$, such that for any $t\in[0,1]$ $\varphi_t(L_0)=L_t$. Any contact isotopy of ST^*B lifts to a (homogeneous) Hamiltonian flow on $T^*B \setminus 0_B$. More precisely – consider a Hamiltonian $H_t: T^*B \setminus 0_B \to \mathbb{R}$ such that $H_t(ap,q) = aH_t(p,q)$ for any positive number a (we will say that such a Hamiltonian is homogeneous). Then the flow of such a Hamiltonian function is well defined for all values of t and projects to a contact flow on ST^*B . Moreover, any contact flow on ST^*B could be given as a projection of a unique Hamiltonian flow above.

We take a homogeneous Hamiltonian H_t corresponding to the flow φ_t . Consider a function $K_t(p,q,u) = H_t(p,q)$ on $(T^*B \setminus 0_B) \times \mathbb{R} \subset$ $J^{1}(B)$ as a contact Hamiltonian (see [AG]) with respect to the contact form $du - \lambda$. Any set $(T^*B \setminus 0_B) \times c$ is invariant under the flow of generated by K_t and coincides on it with the flow of H_t under the forgetful identifications $T^*B \times c = T^*B$ that set with the flow of H_t . It follows from the explicit formula for the corresponding vector field: $\dot{u} = K - pK_p, \dot{p} = K_q - pK_u, \dot{q} = -K_p \text{ (see [AG])}.$ u-component of that contact vector field equals to zero since K is homogeneous. Hence the flow ψ_t generated by K satisfy $\psi_t(\Lambda \cap (T^*B \setminus 0_B)) = L_t$. But in general it is impossible to extend ψ_t to a flow on the whole space $J^{1}(B)$ so we will change the function K_{t} . Let us fix an arbitrary smooth function $\widetilde{H}_t \colon T^*B \to \mathbb{R}$ coinciding with H_t in a neighbourhood of infinity. Denote by P_t the function $P_t(p,q,u) = H_t(p,q)$ and by P_t^C $(C \in \mathbb{R}_+)$ the function $P_t^C(p,q,u) = \frac{1}{C}P_t(Cp,q,u)$. We claim that for sufficiently big C the legendrian isotopy of Λ generated by the contact flow Ψ_t^C of $P_t^{\bar{C}}$ satisfyes to the claim of lemma.

Let us fix a number a such that absolute value of any critical value of Λ is bigger then 2a. Denote by $X \subset \Lambda$ the subset formed by all points such that an absolute value of u-coordinate is at most a, by Y we denote the closure of its complement $\Lambda \setminus X$. The set X is a compact set and contained in $(T^*B \setminus 0_B) \times \mathbb{R}$. Take a neighborhood $U \subset T^*B$ of zero section, the support of $P_t^C - K_t$ containes in $U \times \mathbb{R}$ for sufficiently big C. Hence, for sufficiently big $C \Psi_t^C(X) = \psi_t(X)$ for all $t \in [0,1]$. It remains to show that for sufficiently big C u-coordinate of any point in $\Psi_t^C(Y)$ could not be zero and hence zero reduction of $\Psi_t^C(\Lambda)$ is L_t . The coordinate u changes under an action of a contact Hamiltonian P according to the low: $\dot{u} = P_t^C - p \frac{\partial P_t^C}{\partial p}$. So it is sufficient to show that the speed uniformly tends to zero. The following general consideration finishes the proof.

Consider a smooth vector bundle V over closed manifold M. We denote by M(c) fiberwise multiplication by c. We say that a smooth function on V is positively homogeneous of degree 1 at infinity if it coincide with a continuous positively homogeneous (i.e. $1/c(M(c))^*$ -invariant for any positive c) of degree 1 function up to a sum with a compactly supported continuous function. Let v be a vertical vector field coinciding with Euler vector field on each fiber. Consider an operator D sending a function g on V to $g - L_v g$. For a positively homogeneous function f the function Df is a compactly supported function. Denote by f^c the function $1/c(M(c))^* f$, i.e. for any $x \in V$ $f^c(x) = 1/cf(M(c)x)$.

Lemma 1.2. For any smooth positively homogeneous of degree 1 at infinity function f, C^0 -norm of $D(1/c(M(c))^*f)$ tends to zero while $C \to +\infty$.

Proof. Indeed, $D(\frac{1}{c}(M(c))^*f)=\frac{1}{c}(M(c))^*D(f)$. Hence C^0 -norm of $D(1/c(M(c))^*f)$ equals to C^0 -norm of f divided by C.

1.6. Chekanov-type theorem. Consider the space ST^*B of cooriented contact elements on a closed manifold B.

Theorem 1.3. Let $\{L_t\}_{t\in[0,1]}$ be a legendrian isotopy of a compact Legendrian manifold $L_0 \subset ST^*B$. Suppose L_0 is given by a generating family $F: E \to \mathbb{R}$, for a smooth compact fibration $E \to B$. Then there exists $N \in \mathbb{Z}_+$, such that L_t is given by a generating family $G_t: E \times \mathbb{R}^N \to \mathbb{R}$ of the form:

$$G_t(e,q) = F(e) + Q(q) + f_t(e,q)$$

for a nondegenerate quadratic form Q on \mathbb{R}^N and compactly supported function f_t such that $f_0 = 0$.

The (generalized) Chekanov theorem [Ch, P] has almost the same statement – ST^*B is replaced by $J^1(B)$.

Proof. Proof is a reduction to (generalised) Chekanov theorem. By legendrian isotopy lifting lemma we reduce the problem to $J^1(B)$ -case. \square

References

- [AG] V.I. Arnold, A. Givental, Symplectic geometry, Encyclopedia of mathematical sciences vol 4., Springer 1997.
- [Ch] Chekanov, Yu. V. Critical points of quasifunctions, and generating families of Legendrian manifolds. Funct. Anal. Appl. 30 (1996), no. 2, 118–128.
- [EG] Y. Eliashberg, M. Gromov
- [P] Pushkar', P. E. A generalization of Chekanov's theorem. Diameters of immersed manifolds and wave fronts. Proc. Steklov Inst. Math. 1998, no. 2 (221), 279–295.