MORSE THEORY ON MANIFOLDS WITH BOUNDARY
PETYA PUSHKAR

ABSTRACT. Main subject of the paper is a (strong) Morse function
on a compact manifold with boundary. We generalize classical
Morse inequalities.

INTRODUCTION

0.1. Classical Morse theory studies the relationship between the set of
critical points of a Morse function on a manifold and the topology of
the manifold. In this paper we consider the case of a manifold with
boundary. In particular, we solve the problem posed by V.I. Arnold
of estimating from below the number of critical points of a generic
extension to the whole manifold of a given generic germ of a function
along the boundary.

We consider so-called strong Morse functions. Recall that a function
F' defined on a compact manifold M with boundary OM is called a
Morse function if

(1) all of its critical points are non-degenerate and are contained in
the interior of M;

(2) the restriction F'|;, is Morse function on the closed manifold
oM.

Denote by Crit(F') the set of all critical points of the function F. A
Morse function F' is called a strong Morse function if for any x,y €
Crit(F') U Crit(Fg5;) we have F(x) # F(y). We will refer to a germ of
a strong Morse function along the boundary as a strong Morse germ.

Let F be a strong Morse function on M, and let E be a field. The
main result of this paper is the existence of powerful combinatorial
structure on Crit(F). Part of this structure is the decomposition
of Crit(F) into two canonical disjoint subsets. We call the first
subset the topologically essential subset and denote it by Topg(F).
We call the second subset the additional subset and denote it by
Addg(F). Accordingly, the Morse polynomial P(F') of the function
F' is decomposed into sum of two polynomials

P(F) (t) _ Z tindx _ Z tind:r: + Z tindx’
z€Crit(F) z€Topg (F) x€Addg (F)

where ind denotes the Morse index of a critical point and the first

equality is the definition of the Morse polynomial. We denote the first
1
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sum from the right hand side of the equality above by Pg(F)(t). We
show that the subset Addg(F) decomposes in a canonical way into pairs
of critical points of consecutive Morse indices. Thus the second sum
from the right hand side of equality above is equal to (1 + ¢)Kg(F)(¢)
for a polynomial Kg(F') with nonnegative integer coefficients.

Let f be a strong Morse germ along the boundary OM of a
manifold M. We will construct a finite set Pg(f, M) of polynomials
with nonnegative integer coefficients depending on f, (M,0M) and E
only. The crucial property of Pg(f, M) is that for any strong Morse
function F' extending the germ f, the polynomial Pg(F)(t) belongs to
the set Pg(f, M). Thus we have the following theorem:

Theorem 0.1 (Generalized Morse inequalities). Suppose that f is a
strong Morse germ. Each strong Morse function F: M — R extending
f determines a polynomial Pg(F) € Pr(f, M) and a polynomial Kg(F)
with nonnegative integer coefficients so that

P(F)(t) = Pe(F)(t) + (1 + t)Kg(F)(t).

The set Pg(f, M) is explicitly constructed (see Sec. 7.1, 6.1, 6.2 and
6.4) from topological data described in sec. 0.4 below.

Concerning the problem of estimating the number of critical points
of an extension of a germ along the boundary we obtain the following
theorem, which is a corollary of Theorem 0.1.

Theorem 0.2. ( Generalized weak Morse estimates) Suppose f is a
strong Morse germ and let F' be a Morse function extending f. Then,
(1) the number of critical points of the function F is greater than or

equal to min  P(1);
PePs(f,M)

(2) the number of critical points of the function F" of index i is greater
than or equal to the minimal coefficient of t* among all the coefficients
of t of polynomials in the set Pg(f, M).

0.2. Relation with the classical Morse inequalities. We will briefly recall
the celebrated Morse inequalities for manifolds with boundary [10].
Consider a germ f of a function along the boundary of a manifold M.
We say that a critical point of the function f|, is outward directed
(respectively, inward directed) if the derivative of f in the direction of
the outer normal to the manifold at this point is positive (respectively,
negative). For a function ' on M the outward (respectively, inward)
directed critical point of F'|y,, are defined as those of the germ of F'
along M. We denote the number of critical points of the function F'
of index i by m;(F) and the number of inward directed critical points
of the function F|y,, by m?(F, M).

For any field E and Morse function F' the numbers M; = m;(F) +
md(F, M) and the numbers bF(M) = dim H;(M;E) satisfy the Morse
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inequalities [10] for a manifold with boundary

(0.1) My—My_1+..4(—=1)"My > b (M) —by_ (M) +...4(—1)*b§ (M)
where k € {0,...,n — 1}, as well as

M, — My + ...+ (—=1)"My = bE(M) — bE (M) + ... + (=1)"b5 (M).

It is known that this system of inequalities is equivalent to the following
statement, similar to the statement of Theorem 0.1. Namely, there
exists a polynomial kg(F') having nonnegative coefficients such that

> Mit' = Pe(M)(t) + (1 + t)kg(F)(t),

where Pg(M)(t) = > 0¥t is Poincaré polynomial of the manifold M.
This equality is equivalent to the following equality

P(F)(t) = Pe(M)(t) — P-(F, M)(t) + (1 + )ke(F)(1),

where P_(F,M)(t) = Y m?(F,M)t'. Note that the polynomial
Pg(M)(t) — P_(F,M)(t) depends only on the manifold M and the
germ f of F along OM, we will denote P_(F, M) by P_(f, M).

We will show (see Sec. 8.1) that, given a strong Morse germ f and a
polynomial P € Pg(f, M) there exists a polynomial () with nonnegative
integer coefficients such that P(t) = Pg(M)(t) — P_(f, M)(t) + (1 +
t)Q(t). Thus the classical Morse inequalities are consequences of the
Theorem 0.1. For M closed, we show in Sec. 7.2 that the set Pg(f, M)
consists of a single element, namely, the Poincaré polynomial Pg(M)
of M. Hence in the case of closed manifolds Theorem 0.1 is equivalent
to the classical Morse inequalities.

0.3. Stimplest example. For certain important classes of germs the
classical Morse inequalities yield adequate estimates for Arnold’s
problem. More often, however, the estimate derived from classical
Morse equalities are weak or even vacuous.

Consider, for example, the simplest manifold with
boundary — a closed interval — and a function F' 1p
shown on Fig. 1. Let f be the germ of F' along the
boundary. It is clear that any extengion of f will have F
at least two critical points. Howevgi?’ﬂrmgﬁ ACHGRts
P(f) = Pe(M) — P_(F, M) is equal to zero. Hence, R
the classical Morse inequalities estimate the number of F
critical points of a generic extension of f from below
by 0. We show (see Sec. 7.2) that the set Pg(f, M)
consists of a single polynomial, Pg(f, M) = {1 + t},
which guaranties at least two critical points by Theorem 0.2.

0.4. Topological data. The set Pg(f, M) constructed in Sec. 7.1 by an
explicit procedure starting from the following data (all the homologies
are counted with coefficients in E):

Figure 1.
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(1) The dimensions of the homologies Hy(M), Hi(M,0M), and
H.(OM) for any k.

(2) The critical values, indices and types (inward or outward) of
critical points of the function f|z,,.

Let ¢; < ... < ¢y be all the critical values of the function f|g,,. We fix
a choice of numbers ay, ..., ayy1, such that a; < ¢ <as < ... <aynii.

(3) For any pair 4, 7, such that 1 <i < j < N+ 1, and for any k the
dimension of the k-th homology of the pair ({ floas < @;}, { flom < ai})-

(4) For any j € {1,..., N + 1} and nonnegative k the dimension of
the subspace

(He({flonr < @i})) N O™ Hi 1 (M, 0M) C Hy(OM)

is known. The mapping ¢, is induced by the natural inclusion { f|, <
a;} — OM and 0" is the connecting homomorphism from an exact
subsequence of the pair.

The construction of Pg(f, M) is independent of the other parts of
the paper.

0.5. Plan of the paper. In Section 1 we consider an Arnold’s example,
generalizing example of Sec. 0.3, of a germ of a function along the
boundary of n-dimensional ball and explain methods and techniques
of the paper. In Section 2 we correspond to a strong Morse function
an algebraic object — a pair of chain complexes with a preferred basis.
This pair is defined up to some equivalence.???

0.6. Previous results. The problem of finding the condition under which
a germ of a function along the boundary can be extended into the
interior without critical points was considered in [5] and [6].

The Arnold’s problem for a closed n-dimensional ball was considered
by Barannikov [2]. In this case the results of [2] imply estimates which
coincide with ours.

1. ON RESULTS AND TECHNIQUES OF THE PAPER

1.1. Arnold’s problem and classical Morse inequalities. One can show
that the algebraic number of critical points of a generic extension
of a strong Morse germ f to M is independent of the extension
and equals to x(M) — >_,(=1)'m;(f), where m;(f) is the number of
inward directed critical points of f|y,, of index i. Denote the number
x(M) = >, (=1)'m;(f) by x(M, f). The absolute value of x(M, f)
gives a rough estimate for Arnold’s problem. This estimate could be
deduced from the classical Morse inequalities which give, in general,
a stronger estimate in Arnold’s problem. We also note here, that
Arnold’s question of estimation of a number of critical points from
below is vacuous without boundary conditions. Indeed, for a connected
compact manifold M of the dimension n > 1, such that OM # @, and
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any collection my, ..., m,, of non-negative integers can construct a strong
Morse function F' on M such that m;(F) = m;.

The example considered in 0.3 is a particular case of more general
construction due to Arnold. For a given constant C' and n > 1 the
construction produces a germ h along the sphere S™ bounding the
closed ball B = B""! such that x(B,h) = 0 and the number of critical
points of a generic extension of h to the ball bounded is at least C.
The construction starts from an auxiliary closed connected manifold
N of dimension n + 1 such that > bE(N) > C and x(N) = 0 and a
function H on N having a finite number of critical points. Consider
an embedding e: B <— N such that all the critical points of H are
contained in the interior of the image of the embedding. Denote by h
the germ of e*H along the sphere S™. After a slight perturbation of e
we can assume that h is a strong Morse germ.

The germ h has the desired properties. Indeed, let F' be a generic
extension of h to B. Let GG denote the function on N uniquely
determined by G|ny\epy = H and G oe = F. The function G is a
Morse function, hence, by Morse theory the number of critical points
of G is at least Y bE(N) (= C). By construction, all the critical points
of G are contained in the interior of e(B). Therefore, the number of
critical points of F'is equal to the number of critical points of G. The
number x(B,h) is equal to the algebraic number of critical points of
G, which equals to x(N) (= 0) by Morse theory.

We show (see Sec. 8.3) that, if N is a product of a closed manifold
with a circle, the classical Morse inequalities do not guarantee existence
of critical points of a generic extension of h to the ball. At the same
time our inequalities estimate the number of critical points from below
by the sum of Betti numbers of the manifold N.

1.2. Pairs of complezes. The construction of the set Pg(M, f) is a
byproduct of study of pairs of chain complexes of vector spaces over E
equipped with additional structure. A pair of chain complexes arises
in the following way. Using Morse theory one associates to each strong
Morse function F on M (see 7?77 below) a pair (X, Y") of CW-complexes
which is homotopy equivalent to the pair (M,0M). We note here,
that the pair (X,Y) is not uniquely defined in general, it depends on
choices of cell approximation in the construction. It turns out that
cells contained in Y are in one-to-one correspondence with the critical
points of F|sy;. Cells of X which are not contained in Y are in one-
to-one correspondence with the union of the set of critical points of
the function F with the set of outward directed critical points of the
function F|yy,. It turns out that there is a natural order on all cells of
X, such that cellular boundary of each cell is a linear combination of
cells of lower order or zero.

Consider the pair of cellular chain complexes with coefficients in [E of
the pair (X,Y). This pair is a pair of graded vector spaces (L1, Lo) with
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the differential 0. The pair (L1, Ls) is independent of (X,Y’) and has
a preferred ordered basis which depends only on the function F'. The
differential 0, in general, depends on the pair (X,Y"). The value of 9 on
a basis element is either a linear combination of basis elements having
lower order or zero. We say that such a differential is a M-differential.

The arbitrariness in a choice of (X,Y’) leads to an arbitrariness of
M-differentials. We refer to an upper triangular group a group of
all graded automorphisms of L, preserving Lo with upper triangular
matrices in the preferred basis. Upper triangular group acts on M-
differentials by conjugation.

Let 0, 0; be two M-differentials on (L, Ls) given by Morse theory.
We show (see 777) that there exists upper triangular automorphism .S,
such that 0 = S0, S.

1.3. Partition of M-differentials. By the consideration above, each
strong Morse function F' corresponds to an orbit Op of the action of
upper triangular group on the space of M-differentials.

We consider the space of all M-differentials acting on a pair of
graded vector spaces equipped with an ordered basis and the action
by conjugation of upper triangular group on this space. Additional
conditions motivated by topological reasons determine a subspace D of
the space of all M-differentials which is invariant under the action of
upper triangular group. Our main result (see 777) is a partition of the
set of orbits of this action on D into a finite number of subsets. We show
that each set in the resulting partition has a canonical representative
which decomposes into a direct sum of differentials of sixteen different
types.

Thus, it turns out that there is a remarkable combinatorial structure
on the set Crit(F) U Crit(F|sp;): the critical points of the function
and its restriction to the boundary can naturally be divided into sets
(consisting of one, two, three, and four elements) of the sixteen different
types. This combinatorial structure is a generalization to the case of a
manifold with boundary of the division of the critical points of a strong
Morse function on a closed manifold into pairs and points “responsible
for homologies”. In particular, this combinatorial structure gives rise
the partition Crit(F') = Topg(F) U Addg(F) mentioned in sec. 0.1.

In addition, to an orbit O of the action of upper triangular group
on D we associate a finite graph I'(O). Let f be a strong Morse germ
along the boundary OM of a manifold M and let F' is a strong Morse
function on M extending the germ f. We show that the graph I'(Op)
depends only on the manifold M and the germ f, I'(Op) = I'e(M, f).
The topological data needed for construction of I'g(M, f) is described
below?77?.

777 Skazat’ (snova - proverit’ snowa li eto) chto mnogohleny stroqtsq
po grafu
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Denote the number of vertices of the graph I" by v(I"). Recall that a
matching is a collection of edges without common vertices. Let m(I")
equals two times the maximal number of edges in a matching.

We show that the number min P(1) from Theorem 0.2 has the
PePg(M,f)

following interpretation in terms of I'g(M, f).

Theorem 1.1. The number of critical points of a Morse function
continuing a strong Morse germ f is greater then or equal to
[g(M —m(Tg(M = i P(1).
o(To(M. ) = m(Ta(M. ) = min P(1)
The set of vertexes of I'g(M, f) are, by definition, graded by integers.
A k-th component of the set of vertexes of I'g(M, f) is, by construction,
the disjoint union of five sets Ay, By, Ci, Dy and E;. The following
theorem generalize (in terms of I'g(M, f)) weak Morse inequalities
mi(F) = bE(M) — mi(f,0M) (my(f,0M) is the number of index k
inward critical points of f).

Theorem 1.2. The number m;(F) of critical points of index k of a
Morse function continuing a strong Morse germ f is greater then or
equal to

#By + #Cp + #Dy + #E, — #A_1.

2. FUNCTIONS ON MANIFOLDS WITH BOUNDARY AND PAIRS OF
COMPLEXES

The standard procedure of Morse theory [7] associates a CW-
complex to a Morse function on a closed manifold. Starting from a
strong Morse function on a manifold M with the boundary OM we
construct a pair (X, Y") of CW-complexes which is homotopy equivalent
to the pair (M, 0M). In general, the pair (X,Y") is not defined uniquely.
It depends on cellular approximations used in the construction below.
We study (at the level of cellular differential) the arbitrariness in our
construction.

2.1. Bifurcations of sublevel sets. Let F' be a strong Morse function
on a manifold M with the boundary dM. We denote a sublevel set
{F < ¢} by F,, and the set {F|y; < c} by F2. Let ¢; < ... < cy be
critical values of the functions F' and F'|y,;. For a topological space X
and a continuous map ¢: S¥~! — X we denote by X U e the result
of attaching a cell e* of the dimension k along ¢ to the topological
space X. Recall that a pair of topological spaces (A, B) is a strong
deformation retract of the pair (Ay, By), if (A1, B1) D (A, B) and there
exists a family f;,ej0,1): A1 — Ay of continuous maps such that f, = Id,
fi(B1) C By, fila = Id for any t € [0,1] and fi(A:1) = A, fi(B1) = B.

The topology of pair (F., F?) changes when the parameter ¢ goes
through critical values as follows:
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Proposition 2.1. (0) If an interval [a,b] does not contain critical
values cy, ...,cn, then the pair (F,, F?) is strong deformation retract
of the pair (Fy, F?).

Let ¢ € {c1,...,cx} and the number ¢ > 0 is sufficiently small.
Consider pairs (Fo—o,F2 ) C (Foee UF?,F2..) C (Fuye, F2.,).

(1) Let ¢ be a critical value of the function F at the critical point
of index k. The pair (F._.,F? ) is a strong deformation retract of
the pair (F._. U F2_,F2.). There exist an attaching map ¢ and a
homotopy equivalence

h: (Foe, Fc8+s> — ((Fe—e U Fcis) Uy ek> Ff+5),

which equals to the identity map on F._. U Fgre.

(2) Let ¢ be a critical value of the function Flgy, at the inward
directed critical point of index k. There exist an attaching map @ and
a homotopy equivalence

h: (Fo e UF2 L F2 ) — (Fo Uy e, F2 U, eb),

which equals to the identity map on F,_.. The pair (F._. UF2 _, F2,))
is a strong deformation retract of the pair (Foic, F2..).

(8) Let ¢ be a critical value of the function F|g, at the outward
directed critical point of index k. There exist an attaching map @ and
a homotopy equivalence

h: (Fo . UF? _F2 ) — (Fo_. U, " F2 U, e"),

which equals to the identity map on F._.. There exist an attaching map
p1 and a homotopy equivalence

hy: (Fc+av Fca—i-s) — ((Fee U Fca—i-s) U, ekﬂ’ Fca—i-e)7

which equals to the identity map on F._. U Fca+8. The space F._. is a
strong deformation retract of the space F,,.. O

Proposition 2.1 is a relative version of standard [7] results from Morse
theory. Proof is parallel to standard considerations, it follows from the
relative version Morse lemma, saying that for each inward (respectively,
outward) critical point F'|y;, with the critical value ¢ there exist a local
coordinates (z,y) (y € Ry) centered at the critical point such that
F(z,y) = c+y+ Q(z) (respectively, F(x,y) = c—y+ Q(x)) where Q
is a “sum of squares”, and from an explicit for that coordinates choice
of cells and retractions. We omit the details.

2.2. Remark. There exists a surgery on a strong Morse function
eliminating its outward (respectively, inward) critical points and does
not change a restriction to the boundary. This surgery is local,
i.e. defined in a collection of neibourhoods of critical points of the
restriction to the boundary. Two-dimensional examples of such a
surgery are shown on 2. Each surgery adds an additional critical point
inside the manifold. Surgery eliminating all inward points was used
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in [10]. It is easy to obtain the classical Morse inequalities by combining
this surgery with the results of part (0),(1) and (3) of Proposition 2.1.

jM N -~

am 11

Figure 2.Surgery on a strong Morse function

2.3. Morse chain. We continue in the notations introduced in sec. 2.1.
The function F' takes its maximal value at the point belongs the set
Crit(F)UCrit(F|sar). Hence, values of the function F lies in the interval
[c1, en]. We fix numbers ay, ..., ax such that ap < ¢; < a3 < ... < ayn <
cy < ay. Consider the chain of inclusions of topological spaces:

(2,0) = (F,, F2) C (F,y UF? [ F?) C (F,,,F?) C

al’
W C (Fay  F2 ) C(Fay ,UF? [ F2) C (FaN,Fa) (M,0M).

aN-—1 an’
There are 2N + 1 pairs in the chain, we denote them as (Up, Vy) C
(Uh‘/l) C...C (UQN,‘/QN).

According to Proposition 2.1 either U, is homotopy equivalent to
U; or U1 is homotopy equivalent to U; with a cell attached. Applying
standard techniques (see [7]) one can construct a chain of inclusions of
pairs of C'W-complexes

(55075;0) - (‘5517?'1) C..C (XQJ\U?QN)

and homotopy equivalences h;: (U;,V;) — (X;,Y;) for i € {0,...,2N}
such that the following diagram

(Uo, Vo) C (U1, V1) C... C (Uan, Van)

S R
(XOJ%)C(X175}1)CC(—§E2NJEN)

is commutative and satisfies the following: for 7 € {0,...,2N — 1} Y; =
YQN N X and Xz—i—l is either equal to X or is the result of attaching of
a single cell to X,.
We recall standard topological notions. Let (Ag, By) C (A1, By) C
C (AK,BK) = (A, B) and (Co,D()) C (Cl,Dl) C ... C (CK,DK) =
(C, D) be filtered pairs of topological spaces. A filtered (continuous)
map is a map of pairs h: (4, B) — (C,D) such that h(A4;) C C;,
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h(B;) C D; for any i € {0,...,2N}. A filtered homotopy between
filtered maps h; : (A,B) — (C,D), j € {0,1} is a filtered map
H: (Ax1I,Bx1I)— (C,D) such that H|axgy = hj, j € {0,1}.
Two filtered maps h; : (A, B) — (C, D), j € {0,1} are called filtered
homotopic if there exists a filtered homotopy between them. A filtered
map h: (A, B) — (C, D) is a filtered homotopy equivalence if there exist
a filtered map g: (C, D) — (A, B), such that mappings hog and goh
are filtered homotopic to Id, Idp respectively. It easy to show along
the lines of [7] pp. 20-23 that the map hyy above is a filtered homotopy
equivalence.

We say that a Morse chain M of the function F is a following triple:

(1) a CW-pair (X,Y);

(2) a CW-Hltration (&, @) = (X, Yy) C ... C (Xon, Yon) = (X, Y),
such that for each i € {0,....2N — 1} V; = Yoy N X; and X; is
either equal to X;_; or is the result of attaching a single cell to
Xi;

(3) a filtered homotopy equivalence h: (M,0M) — (X,Y).

We will assume below that orientation of cells in Morse chain is
somehow fixed.

In general (see sec. 2.5), the complexes X;, Y; from a Morse chain are
not uniquely defined. However, for any ¢ € {{0,...,2N} the number
of cells of a given dimension in X;,Y; is determined by the function F’
only. According to Proposition 2.1 the total number T = T(F') of
cells in the complex X5y is equal to the sum of the number of outward
critical points of the function F'|5,,; and the number of critical points of
the function F. The total number of cells in the complex Y,y is equal
to the number of critical points of the function F|y;,.

2.4. Remark. Starting from a Morse function and a generic Riemannian
metric on a closed manifold one can equip the manifold with a structure
of a CW-complex (see. [13]). One can do it in the case of a manifold
with a boundary also, but we do not use it in the paper. 777

2.5. BExample. Consider an annulus which is a complement in a sphere
S? C R3 to two disks as shown in Fig. 3.I. Let I be the height function
on this annulus. It has one critical point of index 2 with the critical
value ¢z, ¢1,c9,c3,c5, ¢ are critical values of F|y,, at inward directed
critical points, ¢4 is the critical value at the outward directed critical
point. In Fig. 3.II, Fig. 3.I1I we shown cells from Morse chains M, M’
corresponding to the function.
MN??2?PEREDELAT’ risunok podpisat’ e; (M), ..., es(M)

2.60. Upper-triangularity. Consider a Morse chain M of a strong Morse
function F'. We enumerate the cells of M by e;(M), ..., er(M) with
respect to their appearance in the subcomplexes X; — a cell attached
later has a bigger number then a cell attached on earlier step.
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Figure 3. Height function on an annulus

Consider Morse chains M, M’ of the strong Morse function F. Let
M consists of pairs {(X;,Y;)} and a filtered homotopy equivalence h,
M’ consists of pairs {(X/,Y;/)} and a filtered homotopy equivalence h'.
Consider a filtered homotopy inverse g: (Xan, Yoy ) — (Usn, Van) of the
filtered map h. Let S denote the composition hog. The map S induces
a cellular homotopy equivalence S;: X; — X/ for any i € {1,...,2N}.
Let S denote the induced map of cellular chain complexes. Sy is an
isomorphism of complexes, moreover, the following statement holds.

Proposition 2.2. Matriz of S;EN with respect to the bases
(e1(M),...,en(M)) and (e;(M),...,er(M")) is upper-triangular with
+1 on the diagonal.

Proof. Consider a cell e, (M). Consider the minimal ¢ = i(k) such that
er(M) € X;. By definition X; consists of k cells e; (M), ..., ex(M). The
map S is filtered, hence S7 (e, (M)) = S¥(e,(M)). The number of
cells in X! is equal to the number of cells in X;. Therefore, S¥ (e, (M))
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is a linear combination of cells e; (M), ..., ex(IM'). It proves that matrix
of SfN is upper triangular.
A diagonal element (S3y ) is the degree of the map

SR — Xy [ Xiwy-1 — Xy / Xigy—y = SEmr O

induced from Sj). Sj) is a homotopy equivalence. It follows that this
degree is equal to +1. O

The considerations above motivates the following definitions.

2.7. Definition of M -complex, isomorphisms. M-complez is a following
structure:

(1) A finite complex of finite-dimensional vector spaces over a field

E:

0 Or—1 Or+1 3]
0—>CK—K>CK,1 — ...—>CL—L>CL71—>O

(i.e. for all ¢ holds 9; 0 9,41 = 0). We denote direct sum @,0;
by 0.

(2) Every space C; is equipped with a fixed basis.

(3) On the union A of all bases fixed linear order, satisfying the
“decreasing order” condition: for any a € A the vector 0(a)
is equal to linear combination of elements from A with order
smaller then a or zero.

We will need also another equivalent definition of M-complex. Let
A be a finite linearly ordered graded set {ay,...,an}, a1 < ... < ay. A
grading on A is a mapping to A — Z, we denote it by deg. The number
deg(a) is called the degree of the element a € A. The vector space
F(A) = E® A is naturally graded. A M -differential (M 4-differential)
is a differential 0 on F(A) of degree —1, such that d(E® {ay, ...,a;}) C
E ® {ai,...,a;—1} for all i € {1,..., N}. An M-complex is a graded
vector space F(A) with a M-differential 0. We denote it by M4 .
M-complexes equipped with additional structure were considered in
[2] and called framed Morse complexes.

We say that two M-complexes My, 5, and My, 5, are equal, if
the sets A; and Ay are graded ordered isomorphic and matrices of
differentials 0, and 0, in bases A; and As coincide. By Autr(A) we
denote a group of all graded automorphisms of the space F(A) = E® A,
preserving each vector subspace E®{ay, ..., a;}, 7 € {1,..., N}. Matrices
in the basis A of operators from the group Autr(A) are upper-
triangular. We say that M4-differentials 0y,0,: F(A) — F(A) are
equivalent (or A-equivalent), if there exists such a g € Autp(A), that
0y = gO1g~t. We say that two M-complexes are isomorphic, if they
are equal after replacing of one M-differential by an equivalent one.

2.8. Pairs of M-complexes. Let Myp be an M-complex. For such
a subset B of the A, that (E ® B) C E® B = F(B), MB73|HB)
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is an M-complex (order and grading on B are induced from order
and grading on A). We will say that Mp g F(B) is M-subcomplex of

M-complex M5 and will denote O|rp) by dp. A pair consisting
from M-complex and its M-subcomplex we call a pair of M-complexes
or M-pair. Differential 0 in that case we call M, p-differential. We
denote an M-pair (Mas, Mp ag) by Map,o. Consider the subgroup
Autr(A, B) of the group Autr(A), consisting from all elements g €
Autr(A), such that g(E ® B) = E® B. My pg-differentials 0; and 0,
are called (A, B)-equivalent (or equivalent), if 9, = gd1g~' for some
g € Autp(A, B). Two M-pairs My, g, s, and My, p, 5, are called
isomorphic, if they are equal after the replacement of one M-differential
on (Ay, By)-equivalent.

2.9. Algebraic model of strong Morse function. Let F' be a strong Morse
function and M be a Morse chain of F'. Cellular boundary of e (M) is
zero or linear combination of cells with smaller indexes. Hence, Morse
chain naturally generates a pair of M-complexes M4, g, o with M-
differential 0 = 9(M). The set Bp could be identified with critical
points of the function F|y,, graded by Morse index indy; and ordered
with respect to critical values. The set Ap is a result of the following
operations. Firstly we add to Bp the set of critical points of function
F' graded by ind,;. Denote the resulting set by Cr. It is naturally
ordered with respect to critical values. Denote by G C Bp a subset
consists of all outward critical points of the function F|y,,. For each
element b € Gr we add to Cr an element b, next to b with degree
indys Flgar(b) + 1. The resulting set is Ap.
The following statement summarizes the previous observations.

Statement 2.3. Strong Morse function F naturally corresponds
to a pair of M-complexes My, . o, which is defined up to an
1somorphism. Il

An arbitrary pair of M-complexes M4, g, s isomorphic to an M-
pair constructed by Morse theory from a strong Morse function F' we
call an algebraic model of the function F. The boundary of 1-cell
consists of at most two 0-cells. Hence, even if we consider integer
coefficients and isomorphisms only then not every algebraic model
corresponds to a Morse chain from sec. 2.3.

2.10. Boundary homologically essential critical values. Let h be a
function on the boundary OM of a manifold M. The set of critical
values of the function h contains naturally distinguished by the
following construction subset.

Denote by hq, ¢ € R the under-level set {h < ¢}. Consider
the subspace tx(Hi(he; E)) of the space H.(OM;E) (v, is induced by
inclusion). Denote by I. an intersection of that subspace with a
subspace 0*H,(M,0M;E) C H.(OM;E), where 0* is an operator from
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the long exact sequence of a pair (M,0M). The dimension dim /.
is monotone non-decreasing function of the parameter ¢ with integer
values. According to Morse theory the dimension of I. jumps only
at critical values of the function h. We say that the critical value of
the function h is boundary essential critical value if it is a point of
discontinuity of the function dim /.. Boundary homologically essential
critical value of a function F' on M are those for F|,,.

Boundary homologically essential critical points of a height function
are marked by black circles on the Figure 4.

~
Q& §—

I II I

Figure 4. Boundary homologically essential critical values

2.11. Drawing of a pair of M -complex. An M-pair M 4 p o we will draw
as follows. Elements of the set A we draw bi circles and place this circles
along the vertical axis in correspondence with the order on A: a circle
corresponding to an element a; is higher then a circle corresponding to
an element a; if ¢ > j. Circles corresponding to elements from the set B
we draw left to the vertical axis, circles corresponding to elements from

the set A\ B we draw right to the vertical axis. If da; = Y Apag, A\p # 0
kel
then we connect circles corresponding to elements a; and ag, k € I by

segments labelled by Ay if Ay # 1. For example, an M-pair My p s,
where A = {ay,a9,a3,a4}, B = {a1,a3}, and differential 0 defined on
basis elements: day = as + as, daz = ay, das = —ay, da; = 0 is shown
on the Fig. 5.1.

For algebraic model of a strong Morse function F' we draw circles
corresponding to boundary critical values of F|y,, as black circles. We
show below that each outward critical point b € Gp appears with
non-zero coefficient in d(b;). We will draw double segment connecting
b with b, instead of ordinary segment. On the Fig. 5.1I is shown a
graph of a function on a segment and its algebraic model with Zo-
coefficients. On the Fig. 5.1I1 we show the M-pair with Zs-coefficients,
which corresponds to the Morse chain from Fig. 3.11.
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Figure 5. Examples of M-pairs

3. PAIR OF M-COMPLEXES. FORMULATION OF M-MODEL
THEOREM.

In this section 777

An arbitrary M-pair, considered up to equivalence, is a difficult
object to work with. We will stratify the set of all M-pairs into pieces
such that each stratum contains relatively simple M-pair encoding
the stratum. This M-pair will called M-model of any M-pair in
corresponding stratum.

3.1. Boundary homologically essential elements of M -pairs.  The
following notion is an algebraic analog of the notion of a boundary
homologically essential critical value from 2.10. A filtration on
topological space or on a complex defines a filtration on any subspace
of its homologies. This simple observation lead us to the following
definition. For a finite linearly ordered set X = {z; < ... < znx} we
will denote the space E @ {z1, ..., xx} by Fr(X).

Consider a M-pair My ps. Let B = {by < ... < bg}. The
space Fi(B) = E ® {by,...,bx} C F(B) is Og-invariant, and hence
graded space of homologies H,.(F(B),05) is well defined. Let
vt Ho(Fp(B),05) — H.J(F(B),0p) denote the map induced by
an inclusion Fi(B) — F(B). Let 0.: H.1 (F(A),F(B),0) —
H.(F(B),0g) be the boundary map of the long exact sequence of the
pair (F(A),F(B)). Denote by I an intersection

L HL(Fu(B),05) N O, H.(F(A), F(B),0) C H.(F(B),d).

Basis element b, € B is called (0-)boundary homologically essential,
if [k 75 [k—l (we let [0 = O)
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We will denote by H(0) the set of all O-boundary essential elements.
It is clear that if a M-differential 0 is (A, B)-equivalent to a M-
differential 0" then H(0) = H(J').

3.2. O-trivial elements. Consider an M-pair My p o, A = {a1 < ... <
an}. We call an element a, € B 0-trivial, if k < N, ag1; € A\ B and
ar, appears in the decomposition of d(ay.1) with respect to the basis A
with nonzero coefficient.

Lemma 3.1. Let 0 and 0" be (A, B)-equivalent differentials. The set
of all O-trivial elements coincides with the set of all O'-trivial elements.

Proof. Let &' = gdg~! for some g € Autr(A, B). We denote by dots
linear combination of elements with indexes smaller then k. We have
g Y ags1) = Mags1 + .., glar) = Xaay, + ... for some Ay, Ay # 0. Then
O(ags1) = pag + ... with g # 0 implies 0'(agy1) = AoptArag + ... O

We denote by My pco a M-pair My o with a fixed subset G of
the set of O-trivial elements.

3.3. Direct sum decomposition. We say that a M-pair Myp s is
decomposable into the direct sum of two M-pairs (or, equivalently, that
differential 0 is decomposable into the direct sum), if there exists such
a decomposition A = A; U A, into disjoint nonempty subsets, that
spaces F(A;) and F(A,y) are O-invariant.

In this case spaces F(A; N B) are also O-invariant, so M-pairs
My, B, o, and My, g, s, are well defined, where B; = A;,NB,i € {1,2}
and 0; are restrictions of 0. We will write Map o = My, B, o, ®
M4, B, 0, in this case. If Map o= Ma, B o, ®Ma,n,a and G is
a subset of all O-trivial elements then, obviously, the set G; = B; N G
(i € {1,2}) consists of J;-trivial elements and we write My pag o =
M, B c.oy®Ma, B,a o, (0r 0= 01 0;) in that case. Decomposition
into the direct sum of greater number of summands is defined in a
similar fashion.

Decomposition of an M-pair into the direct sum of indecomposable
summands is unique up to a reordering of summands. The following
lemma is obvious.

Lemma 3.2. Let MA,B,G = MA1,B1,(91 D... ®MAK,BK,3K' Then H(@)
= H(0)U...U H(Ok) and any O-trivial element a € A; is 0;-trivial
element. O

3.4. Set Dy pa, G-equivalence. M-complexes, considered up to an
isomorphism, admit remarkable classification [2] (see also sec. 4.1
below). M-pairs do not admit such a classification (see sec. 7?7)777.

We fix a triple A D B D G of finite sets and suppose that A is non-
empty. The set A is graded and linearly ordered. Denote by Dy p ¢ the
set of all (A, B)-differentials, such that any element of G is 0-trivial for
any o€ DA,B,G’-
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We say that two differentials 0, 0" € Dy g ¢ are G-equivalent, if they
satisfy the following conditions:

(1) There exists a grading preserving automorphism S of F(A)
(which is not necessarily upper triangular) such that & =
S~198S;

(2) the space F(B) is S-invariant and S|zp) is upper triangular,
i.e. S|.7:(B) € AUtT(B)

3.5. Weak equivalence. Let (A, B) be a pair of finite ordered graded set
and 0 € DA,B,G- Let B = {b1 < ... =< bK}7 A\B = {CLl < ... < (IL}.
Denote by Wg(A) the ordered graded set which is equal (as graded
sets) to A with the linear order <,, given by

b1 <p ... <=pbg < a1 <, ... <, ar.

M 4 g-differential 0 naturally induces the My, 4)-differential wp(0)
which is equal (as ordinary differential) to 0. Obviously the map
0 — wpg(0) preserves equivalence on M-differentials. We say that
differentials 0,0, € D p ¢ are weakly equivalent if wp(0) is equivalent
to wp ().

3.6. Totally decomposable M -differentials. Consider a picture
corresponding to a M-pair with a M-differential 0 € Dy pg. Let
element a = a; belongs to the set G. To emphasize it we will draw
double segment between a circle corresponding to a and the circle
corresponding to the element a; = ajy1. Elements of the set H(0)
we draw as black circles. Grading of any M-pair M;—-M4 shown on
Figure 6 is defined uniquely up to a common shift.

We will call M-pairs of Figure 6 glyphes. We say that a M-differential
0 € Da g is totally decomposable if O is a direct sum of glyphes.

3.7. M -model Theorem.

Theorem 3.3. (M-model Theorem) Let O € Dy p . There exists a
M -differential totally decomposable G-equivalent to O.

Moreover, for any M g-differential O such G-equivalent differential
may be chosen canonically. For each triple (A, B, G) there is defined a
map Papa: Dapc — Dapa satisfying the following properties:

(1) Papc(0) is totally decomposable;
(2) for any O € Da g the differential Pa g (0) is G-equivalent to
0;
(3) if differentials 0,0' € Dape are weakly equivalent than
Papc(d) =P(D);
(4) if O is totally decomposable then Papc(0) = 0;
(5) if Mapao = Ma, .o, ® Ma, oo, then Papa(0) =
PALBl,Gl (61) S PAQ,Bz,Gz (82)
We say that P(0) = Papc(0) is the M-model of the differential O.
The map P is defined in the proof of the theorem.
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Figure 6. Glyphes

3.8. Expressions for Poincaré and Morse polynomials.  Consider
0 € Dy . Poincaré polynomials P(My 9)(t), P(Ma,a, Mp, o) (t)
are by definition Laurent polynomials Y, dim Hy(M4 o)t¥,
e dim H (Mg 9, Mp, 5, )t" correspondingly.

For an element x € G we denote by z, € A the minimal element in
A bigger then x. The element x, belongs to the set A\ B, denote
by G, the set of all elements z, for x € G. We define Morse
polynomial Py (0, G)(t) (7777 -compare with Introduction!) to be equal

ZaeA\(BUG+) les(®),

We index a glyph by a smallest degree of its basic elements. For a
differential 0 € Dy g we denote # the number of glyphes of given
type and index in M-model for 0. In these notations we obtain the
following expressions for Poincaré and Morse polynomials.
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Proposition 3.4.

P(Mao)(t (#Mﬁ e IR T
P(Ma,0, Mp,0,)(t) = (#Llﬂk_ +#H¢k_+#,\f A

P(9,6G) =

>(#

et o vt L [ v b gl e
+Z(# | )tk (1+1).

Proof. 77777 O

3.9. Remark. Notion of weak equivalence, G-equivalence and M-
model theorem is a product of naive attempts of “simplifying” an M-
differential.

4. ON M-COMPLEXES AND M-PAIRS

This section contains preliminary results needed for the proof of
Theorem 3.3. For a given M-differential we construct an equivalent
M-differential having relatively simple form. We call the differentials of
this type by quasi-elementary differentials. This construction is, in fact,
the first step in the proof of Theorem 3.3. The proof of Theorem 3.3
involves subsequent simplifications of the constructed quasi-elementary
differential.

4.1. On a structure of M-complex. Let A be a finite linearly ordered
graded set. A M s-differential 0 is called an elementary differential, if
it satisfies the following two conditions:

(1) for each a € A either d(a) = 0, or there exists b € A, such that
d(a) =0;
(2) O(z) =0(y) = z and x,y, z € A implies = = y.

Theorem 4.1. [2] Let Mg be an M-complex over a field E. Any
M -differential O is equivalent to a unique elementary M -differential.

O

4.2. Partition of the basis of a M -complex into pairs and homologically
essential elements. Consider a M-complex Myg, A = {a; < ... <
ay}. Let 0y denote the elementary M-differential equivalent to 0 (cf.
Theorem 4.1). We say that basis elements a;,a; of an M-complex
My form a O-pair if 01(a;) = a;. We say that a basis element is
(O-)homologically essential element if it does not appear in a O-pair.

)
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According to Theorem 4.1, any element of A is either a homologically
essential element or a member of a unique O-pair. The following
assertions describe this combinatorial structure on A in terms of M-
differential 0. We denote by ¢ an inclusion F;(A) — F(A) and by ¢.
we denote the induced map in homology.

Lemma 4.2. (1) An element a; € A of degree | is homologically
essential, if and only if

dim ¢, (H;(F;(A),0)) = dim ¢, (H;(F;-1(A),0)) + 1.

The number of homologically essential elements of degree k is equal to
dim Hy(Map)

(2) An element a; € A is not homologically essential if and only if
LH (Fi(A),0) = 1. H (Fi_1(A), D).

(8) Elements ap,a, € A, m > n form a O-pair if and
dim H,(F_1(A), Fu(A),0) + 1 = dim H,(F,,(A), Fr_1(A),0) + 1.

Proof. The statement of lemma is obvious for an elementary
differential. Hence, by Theorem 4.1 it holds for any M-differential,
since the dimensions of homologies in the statement depend only on
the equivalence class of the M-differential. O

4.8. Homologically essential and boundary homologically essential basis
elements. Consider an M-pair M 4 po. Some elements of the set B are
O-boundary homologically essential elements (see 3.1).

Lemma 4.3. FEvery 0-boundary homologically essential element is
Og-homologically essential. The number of 0-boundary homologically
essential elements of degree k is equal to dim O,(Hy41(F(A), F(B),0)).

Proof. According to Lemma 4.2 applied to M-complex Mpg,,
LH(F(B),05) # wHJ(F-1(B),0g) if and only if b is Op-
homologically essential. For such [ the dimensions of the spaces
LH.(F(B),05) and 1, H.(F_1(B),05) differ by 1, so we get a full
graded flag in ., H,(F(B),0g), consisting of spaces ¢, H,(Fi(B),0p),
k < I. The intersection of a graded subspace with a full flag is a full
flag in the subspace. This proves the first claim of Lemma. Spaces
LH (Fi(B),05) and 0,(H.(F(A),F(B),0)) are direct sums of their
homogeneous components. This proves the second claim. O

4.4. Quotient M-complexes. Consider a M-pair My p . We will
identify the set A\ B with a basis of quotient complex M4/ Mpay.
The linear order and the grading induce in a natural way the linear
order and grading on A\ B It is clear that the induced differential on
My o/ M Bog 1sa M -differential with respect to the linear order and
the grading on A\ B. We denote the induced differential by 04\ and
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the quotient M-complex by Ma\pa B An isomorphism of M-pairs
naturally induces an isomorphism of quotient M-complexes.

4.5. The sets P,Q), R and D, E, F and bijections. We will show below
that each equivalence class of My p-differential contains a convenient
for our goals representative in an equivalence class of M4 p-differential.
To do that we need the following definitions. 777777777

Consider an M-pair My g 5,- By Theorem 4.1, the M-differential
Oy of the M-pair Ma g g, is (A, B)-equivalent to a M-differential 0,
such that Jp and 04 p are elementary M-differentials.

The differential dz is elementary, hence, the set B is decomposed
into a disjoint union of subsets P, @, R such that 0y restricts to a
bijection () — R and Jp to zero on P. Similarly, the differential 04\ 5
is elementary, hence, the set A\ B is decomposed into a disjoint union
of subsets D, E, F' such that 04 p restricts to a bijection £ — F' and
Oa\p to zero on D.

By Theorem 4.1, the sets P,Q, R and D, E, F' and bijections ) — R
and E — F depend only on equivalence class of the differential 0.

4.6. The definition of a quasi-elementary differential. Consider a vector
space L and a basis X of L. We say that v = > _\ v,x € L contains
an € X (or x appears in v) if v, # 0.

We say that differential 0 is quasi-elementary if it satisfies following
conditions:

(1) differentials dp and 04\ are elementary;

(2) for each element d € D vector 0(d) contains at most one element
of P;

(3) any element of the set P appears in at most one vector d(d) for

deD.

4.7. From M -differentials to quasi-elementary differentials. Recall that
H(0) denotes the set of d-boundary homologically essential elements
of a M-differential 0 (see 3.1).

Lemma 4.4. (1) Any M-differential is equivalent to a quasi-
elementary M -differential.

(2) Suppose that O is a quasi-elementary M-differential. The set H(O)
coincides with the set of all elements of P appearing in vectors 9(d) for
deD.

(3) Suppose that 0, 01 are equivalent quasi-elementary differentials.
For anyd € D and p € P 9(d) contains p, iff 01(d) contains p.

Note that an equivalence class of M-differentials may contain more
than one quasi-elementary differential. The proof of Lemma 4.4 is given
in 4.9 below.

4.8. The injection hy. Consider an M-pair M4 ps. We define a map
hy: H(Q) — D as follows. Let 0’ be a quasi-elementary differential



22 PETYA PUSHKAR

equivalent to 0. For b € H(J) hy(b) is, by definition, an element
d € D such that &'(d) contains b. By Lemma 4.4 the map h is defined
correctly and depends only on the equivalence class of 0. It is clear,
that hy is an injection. Note, that A increases degree by 1.

The following assertion is immediate corollary of Lemma 4.4.

Statement 4.5. Partition of the set B into sets P,Q, R, partition of
the set A\ B into sets D, E, F, bijections () — R and E — F, subset
H(0y) C P and injection hy: H — D are invariants of an M -pair
Mo, - O

4.9. Proof of Lemma 4.4. We prove the first claim of Lemma. Consider
a M-pair Map o, A={a1 < ... <an}.

We assume that differentials dp, 04 5 are elementary differentials.
If the set D is empty then the claim is obvious. Suppose now that D
is not empty. Denote its elements by d; < ... < d; with respect to the
order induced from the order on A. We will use induction to prove the
following statement: 0 is equivalent to a differential 6 = J;, having the
property that for any ¢ € {1,...,k} vector §(d;) contains at most one
element from P, each element from P appears in at most one vector
6(d;) for j € {1,....k} and Op = 0, O\ p = Sa\5-

Let kK = 1. Vector 0(d;) may contain only elements from sets P, R
since 04\ p, O are elementary and 9%(d;) = 0. Hence, 9(dy) = p+,
p € F(P),q1 € F(Q),r € F(R). If p = 0 then the first step of
induction is proved. Consider the case p # 0. Let p; be the maximal
element of P which appears in p. Consider 7, € Autr(A, B) such
that T'(p;) = p and all rest basis elements are fixed by 7,. Then, the
differential 6; = Tp_lan has the desired properties. This establishes
the base of induction.

Suppose that 0 is equivalent to d as above. We may assume that
0 = 0. If O(digs1) does not contain elements from P then 6 = 0
is the desired differential. Let d € F({dy,...,dx}). Denote by T, €
Autp(A, B) the automorphism which maps djy; into a sum di1 + d
and fixed all rest of basis elements. For every d € F({dy,...,dy}) the
differential T, 10T, satisfies the k-th induction hypothesis and for a
suitable dy € F({di, ..., di}) the vector T, '9Ty, (di41) does not contain
clements from P which appears in T, '9Ty,(d;) for i € {1,...,k}. So,
we may assume that d(dg,1) does not contain elements from P which
appear in 0(d;) for i € {1,....,k}. Let O(dgr1) = p + q. Then, the
differential 0,1 = Tp_lﬁTp has the desired properties. First claim of
Lemma is proved.

Let O be a quasi-elementary differential. Then, the number dim I, =
dim(e, H.(Fi(B),0p) N0 H.(F(A),F(B),0)) from the definition of 0-
boundary homologically essential elements is equal to the number of
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elements b; € {by,...,bx} N P appearing in vectors d(d) for d € D. It
proves the second claim of Lemma.

We are going to prove the third statement. Let (A, B) be a pair of
finite ordered graded set. Let B = {b; < ... < b}, A\B = {a; < ... <
ar}. Denote by A’ the ordered graded set which is equal (as graded
sets) to A with the linear order <,, given by

b1 <p oo =p b <p a1 <y ... <, ar.

M 4,p)-differential d naturally induces the M 4-differential 9" which is
equal (as ordinary differential) to d. Obviously this map preserves
equivalence on M-differentials.

In view of Theorem 4.1 the third statement follows from the following
assertion.

Lemma 4.6. Let 0 be a quasi-elementary differential. If p € H(0)
appears in O(d) for d € D then elements d,p generates &' -pair.

Proof. 1t follows from the assumption of Lemma that d(d) = \p + r,
where A # 0 and r € F(R). Let ¢ € F(Q) satisfies d(q) = r. It easily
follows from 9% = 0 that the element p € H(d) does not appear in
O(f),f € F. Let ey, ...,ex € E be all elements, such that p appears in
J(e;) with a coefficient A\; # 0. let f; denote d(e;). Consider a map T'
such that T'(f;) = fi + AP for i € {1,...,k} and T fixes all other basis
elements. Each f; is bigger then p in the set A’. Hence, T' € Autp(A’).
The differential 9, = T—'0'T is M-differential equivalent to &’. The
element p appears in d;(d) and does not appear in 0j-images of other
basis elements. Denote by 77 an automorphism, such that T (d) = d—q
and T} fixes all other elements. Differential 0, = T, 10,7} is equivalent
to ) and the subspase F({d,q}) is its direct summand. 9(d) = A\p
hence d, p generates 0'-pair. O

5. THE PROOF OF M-MODEL THEOREM

We are proving Theorem 3.3. Let (.,.) denotes standard scalar
product on F(A), i.e, (a;,a;) = J;; (0;; is a Kronecker symbol).

5.1. Similar M-pairs and differentials. We call two M-pairs Ma pa. s
and Ma g .o and differentials 0,0 similar if triples (A, B, G) and
(A", B',G") are graded ordered isomorphic and (9(a;),a;) = 0 if and
only if (9'(a;),a}) = 0 for any 4, j (in other words matrices of 9 and &
have zeroes at same places).

5.2. Induction. We will use induction. Suppose that Py p ¢ is already
constructed for all A such that #A < k and satisfies the following
property: if differentials 9; and 0, are similar quasi-elementary
differentials then Py 5 (01) = Pa.pc(02).

We will denote P4 p.e by Pi. The base of construction is the case
#A = 1. For such A M-differentials are equal to zero (M-pairs are of
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the type My or Mg only), these differentials are totally decomposable
and there is a unique way to define a value of P on such differentials:
Papc(0)=0.

We will extend Py, to Py satisfying the property mentioned above.

5.3. From an M -differential to a minimal differential. Consider a M-
differential 0 € Dy . According to Lemma 4.4 there exists quasi-
elementary differential P equivalent to . By Lemma 3.1 all elements
of the set G are O-trivial. Thus 0 € Dapq. By P,Q,R, D, E, F' and
h. we denote the sets and the map from Statement 4.5.

We will use the following simple Lemma. We leave the proof to the
reader.

Lemma 5.1. Suppose dis a quasi-elementary differential.
Let elements ¢ € Q, r € R, e € E, [ € I' satisfy the conditions

0(q) =r,0mp(e) = f. Then ((e),q) = —(0(f),r).
Suppose elements e € E, f € F satisfy the condition Oy p(e) = f

and x € B appears in 5(f) Then x € R and there exists ¢ € R such
that O(q) = r and q appears in O(e). d

Recall, that we denote by z, € A for an element x € G the minimal
element bigger then x. The element x, belongs to the set A\ B, G,
denotes the set of all elements x, for x € G. We say that elements x
and z, generate a G-pair (or (z,xy) is a G-pair).

Next Lemma describes a (distinguished) subset of mnon-zero
coefficients of the matrix of 0.

Lemma 5.2. Suppose that elements x € A\ B, y € B, y < x satisfy
at least one of the following conditions:
(1) (y,x) is a G-pair;
(2) v =hi(0)(y); ~ ~
(3) x € E, y € Q, and elements J(y) and 0a\s(x) generate a G-
pair; B B
(4) v € F,y € R, and elements q, e such that d(q) =y, Ox\ple) = x
generate a G-pair.

then (0(x),y) # 0.

Proof. If (z,y) satisfies to the condition (1) or (2) then (9(x),y) # 0 by
definition of G' and h, Cgrrespondinglz. If (x,y) satisfies the condition

(3) then by Lemma 5.1 (9(z), y) = —(9(r+),r). Since (r,r) is a G-pair
we have (J(z), y) # 0. For condition (4) we have (0(e), q) = —(0(z),y)
and (J(x),y) # 0 since (¢, e) is a G-pair. O

We say that quasi-elementary differential d is minimal, if any pair

x € A\ B,y € B, y < x such that (J(z),y) # 0 satisfies at least one of
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conditions of Lemma 5.2. We call the corresponding M-pair minimal
as well.

Lemma 5.3. For every differential O € Dy p ¢ there exists a minimal
differential 0 € Dy pc weakly equivalent to 0. All such minimal
differentials are similar.

If differentials 0,0’ € Dape are similar and 0,0 are weakly
equivalent (correspondingly) to minimal differentials 6,6 then §,8" are
similar.

Proof. Let 0; be a quasi-elementary differential equivalent to 9. We
will construct a finite sequence of differentials 9, ... ,0,, such that for
any x € A\ B,y € B (0;_1(x),y) = 0 implies (0;(z),y) = 0 for any
i € {2,...,m}, differential 9; is weakly equivalent to 9;_; and 0,, = ¢ is
a minimal differential. We proceed by induction. Suppose that 0; = p
is not a minimal differential and consider a pair z € A\ B, y € B such
that (p(z),y) # 0 and (x,y) does not satisfy to any condition (1) — (4)
of Lemma 5.2.

Lemma 5.4. The pair (z,y) satisfies to one of the conditions:

Ni1. x € E, y € Q and each pair (y,z), (r, f) is not a G-pair, where
r=p(y), [ = pap(r);

N2. x € E, y € R and (y,z) is not a G-pair;

N3. x € E, y € P and (y,x) is not a G-pair;

Nj. x € F, y € R and each pair (y,x), (q,e) is not a G-pair, where
q € Q and e € E be such elements that p(q) =y, pap(e) = z;

N5. x € D,y € R and (y,x) is not a G-pair.

Proof. Consider the following cases x € E, x € F and x € D.

Let x € E. If y € @ then (y,z) does not satisfy to conditions (1),
(2) and (4) automatically. Since N1 holds, because it contradicts to
the condition 3. If y € R then (y,z) does not satisfy to conditions (2),
(3) and (4) automatically. Hence N3 holds, because it contradicts to
N1. If y € P then (y,z) does not satisfy to conditions (2), (3) and (4)
automatically and N3 holds.

Let x € F. Then y € R, because p*r = 0 implies y ¢ Q and y ¢ P.
The pair (y,z) does not satisfy to conditions (2) and 3 automatically.
Hence it satisfies N4 since it contradicts to conditions (1) and (4).

Let z € D. In that case y ¢ P otherwise we have x = hy(y). The
equality p*zr = 0 implies y ¢ Q. Hence y € R and we get the condition
Nb. U

For each case N1-N5 we define a subsequent differential 9;,1 by the
following Lemma.

Lemma 5.5. Let 0;11 be a linear operator such that:

If (z,y) satisfies N1 then 9;11(x) = p(x) — (p(x),y)y, Oi1(f) =
p(f) = p(f);r)r, where r = p(y), f = pap(z), and d;y1 coincides with
p on all other basis elements;
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If (2,) satisfies N4 then dis(z) = p(x) — (p(2), )y, Drs(e) =
p(e) = (ple),a)q, where y = p(q),x = pap(e), and Dir1 coincides with
p on all other basis elements;

If (x,y) satisfies either N2 or N3 or N5 then Oiy1(x) = p(x) —
(p(x),y)y and 0;11 coincides with p on all other basis elements;

In each these cases 0;y1 is quasi-elementary differential, 0;11 €
Dapc and 041 s weakly equivalent to p.

Proof. If (x,y) satisfies N1 then 0, is equal to S;pS;' for an
automorphism Sy such that Si(f) = f — (p(z),y)y and S; fixes all
other basis elements. Thus ;4 is differential (97, = 0). Matrix
elements (0;11(z),y) and (9;+1(f),r) are equal to zero. Indeed

(Oir1 (), y) = (p(x) — {p(x), v)y,y) = (p(x),y) — (p(z),y) =0
and

(D1 (f),m) = (p(f + {p(x), )y), ) = {p(z),y) + (p(f),r) = 0.

Obviously, all other matrix elements (0;41(ay,),a,) of 041 coincides
with matrix elements (p(a,,),a,) of p. Hence the differential 04,
belongs to the space Dy p and it is quasi-elementary differential.
Automorphism S; belongs to the group Autt(Wg(A)), hence 0,41 is
weakly equivalent to p.

Proof for other cases is analogous to the considered one. If (z,y)
satisfies Nj (j € {2,3,4,5}) then 8,5y = S;pS;'.  Operator Sy
acts nontrivially on the element z only and Sy(x) = = + (p(x),y)q.
Operators Sy and S5 act nontrivially on x only: Si(x) = S;(z) =
x4+ (p(z),y)q, where 05(q) = y. An operator S3 acts nontrivially only
on element f = pap(x) and Sy(f) = f — (pl)., y)q.

A set of non-zero matrix elements of minimal differential weakly
equivalent to 0 is uniquely defined by sets P,Q, R, D,E,F and the
map hy. Hence all minimal differentials weakly equivalent to 0 are
similar.

If differentials are weakly equivalent then sets P,Q, R, D, E, F and
the map h, coincide. It proves the second claim of Lemma. Il

Next Lemma describes some properties of minimal differentials.

Lemma 5.6. (1) Let 0 = Oy @ 02 and let o; (i € {1,2}) be a
manimal differential weakly equivalent to 0;. Then &, @ dy is
manimal differential weakly equivalent to O;

(2) Let 0; € Dapec (i € {1,2}) be similar quasi-elementary
differentials and 6; is a minimal differential weakly equivalent
to 0;. Then 61 and 6y are similar.

Proof. First claim of Lemma is obvious. Second claim holds since
sets P,Q,R,D,E,F and the map h, generated by 0; coincide
correspondingly with P,Q,R,D,E,F and the map h, generated
by 82. ]
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5.4. Construction of Pry1. Let #A4 =k + 1 and 0 € Dyp. Let §
be a minimal differential weakly equivalent to 9. If § is decomposable,
0 =01 D .. P90, is a decomposition into indecomposable summands,
then we define Py1(9) to be Pr(d1) @ ... ® Pr(n).

The differential Pri1(0) is well defined. Indeed, if ¢ is another
minimal differential weakly equivalent to O then ¢ is similar to 6.
Hence ¢ decomposes into indecomposable summands 97, ..., 4, such
that ¢; is similar to §; for any ¢ by Lemma 5.3. By inductive hypothesis
Pr(6;) = Pr(07).

Now we are going to define P,y for 0 such that a corresponding
minimal differential ¢ is indecomposable. We split the construction
into two cases. In the first case 0 satisfies the property: for any ¢ € @,
r € R such that 6(¢q) = r and ¢,7 € G holds 04 5(q4) = r. The
second case is the remaining possibility: there exist elements ¢ € @,
r € R such that 0(q) =r, ¢,7 € G and 4\ g(q+) # 74

We say that an M-pair is A;-glyph (i € {1,...,4}) if its differential
coincides with differential shown on Fig. 7.

L?@ - Lf o

= o p=a v

2 e ——

A

“A1 A2 A3 A4

Figure 7.A-glyphes

Let Ms = Muapeg,s be an M-pair and ¢ is a first case
indecomposable minimal differential. For example, each A;-glyph or
M;-glyph is such a differential. Next Lemma shows that it is only the
case.

Lemma 5.7. Differential § is either similar to a glyph or similar to
an A-glyph.

Proof of Lemma 5.7 contains in sec. 5.7 below. Let M g s be
an M-pair such that minimal differential § weakly equivalent to J is
similar to a differential of a glyph. Then we define Py;1(9) = Pa p.c(0)
to be the differential of that glyph. Obviously, Py, 1(9) = S65~! for a
suitable diagonal automorphism S. Hence, P4 p¢(0) is G-equivalent
(and even weakly equivalent) to 0.
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Let M4 B, o be an M-pair such that minimal differential § weakly
equivalent to 0 is similar to a differential of a A;-glyph. In that case
we define Pa g ¢(0) to be a M-differential shown on the corresponding
right part of Fig. 8. Obviously Papc(0) is well defined. Let
us prove that Pspc(0) is G-equivalent to 0. Differential § is
equivalent to the corresponding differential of A;, equivalence could
be achieved by a suitable diagonal automorphism. It remains to
show, that each M-differential 0; of A;-glyph is G-equivalent to P(0;).
We explicitly present an automorphism S;' making G-equivalence
(P(9;) = Si0;S;"). For i € {1,3} S;' is automorphism such that
S py) = a—q, S;'(a) = py —a+ 2q and S; fixes all other basis
elements (see notations on Fig. 8). For i € {2,4} S;! is automorphism
such that S; '(p,) = a—q, S; *(a) = py —a and S; fixes all other basis
elements.
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It remains to define Py, 1(0) for differentials 0 such that minimal
differential 0 weakly equivalent to 0 is indecomposable and there exist
elements ¢ € ), r € R such that 0(q) = r, ¢,7 € G and d 4\ 5(qs) # 7+

Let (q1,p1), -, (qk, px) be all such pairs and ¢; < ... < gx. Consider

the pair (¢,p) = (qk, pr)-
Denote element §4\5(q+) by n. Element n satisfy inequalities 7, <

n < ¢. Indeed, (§(n),r) = —(6(q+),q) # 0 by Lemma 5.1. Hence
n < r. Since n # r, we have r, < n. Second inequality n < ¢ holds

since n = da\p(q+) and n # q.
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Consider all the various possibilitiesfigeGdplacifletit§ G+ Denote
by  the number (§(n), ).

Let n € G4. Then n = 7, for some 7 € B. Since %,
6%(qy) = 0 it follows that 7 € R and there exists an

element ¢ € @ such that 6(¢) = 7. Elements ¢, 7 satisfy Z] — a*
inequalities ry, < 7 < n < ¢ < ¢ (see notations on "«
Fig. 9). ql
b
=

3

Denote by v the number (d(n),7). Consider the
differential ¢'(5) = S6S~!, where 0
SHry)=n—-94 S n)=ry—agq %MO;

and S~ fixes all other basis elements. n
If n ¢ G, we define ¢'(§) to be S§S™1, where Figure 9.

=

Stry)=n, S'n)=r;—aq
and S~! fixes all other basis elements.

Lemma 5.8. Differential 6'(6) is a decomposable quasi-elementary
differential. If 6y is similar to 6o then §'(01) is similar to §'(ds).

We prove Lemma 5.8 in the sec. 5.8. Since differential §'(9) is
decomposable Py.1(0'(6)) is already defined. We set Py1(0) to be
equal Py41(8'(9)). Differential Py1(0) is well-defined. Indeed, if 6, is
another minimal differential weakly equivalent to J, then § is similar
to 0; by Lemma 5.3. By Lemma 5.8 differentials §'(§) and ¢'(d;)
are similar. Therefore they decompose into similar quasi-elementary
summands. By inductional hypothesis the values of P, coincide on
corresponding summands.

The map Py satisfies the properties (1)-(5) of M-model Theorem
automatically. It remains to show that Py, satisfies the inductional
hypothesis. Indeed, consider similar quasi-elementary differentials 0,
and O0y. Let d; (J2, respectively) be a minimal differential weakly
equivalent to 0 (0s, respectively). By the second part of Lemma 5.3
differentials d;, 0o are similar. Since, by our construction, the value
of Pr11 on minimal differentials depends only on similarity class of
minimal differential, Py, satisfies the inductional hypothesis. The
proof of M-model theorem is finished.

5.5. Minimal complexes. We are not proving the results of this
subsection. In particular these results are helpful to work with Morse
functions on manifolds and, also, allows to prove that the map P from
M-model Theorem is unique.

Undecomposable minimal complexes admit a simple description. To
formulate it we need the following definition. Consider new equivalence
relation on M-pairs: two M-pairs Mg e and My, g a6, are
equivalent if (1) (Ay, By, Gy) is isomorphic to (A, B,G) as ordered
triples of sets by an (unique) isomorphism h: A — Ay; (2) h* maps
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grading on A; into grading on A shifted by a constant; (3) the induced
from 0, differential on F(A) is similar to 9. We call this equivalence
relation similar equivalence. Obviously similar equivalence preserve
O-trivial elements.

We draw classes of similar equivalence in similar fashion with pictures
M-pairs: We place a circles corresponding to basis elements with
respect to an order along the line (the subset of basis is on the left
side), we connect a circles by segment or by double segment if the
corresponding matrix elements is non-zero, we place double segment
only if it ends in the set G.

Consider the following partially defined operation on M-pairs.
Consider non-zero M-pairs My pa,0 and Mx y, z 5, such that ANX =
@. Let A={a; < .. <ag}, X ={x; < ... < zr}. We suppose that
degree of xy is bigger by one than degree of zy and that a; ¢ G,
xy ¢ Z.. We denote by A#X the set A U X with the order
T < ... < T <ap <2 < ay < ... < ag. We define an linear
operator 0#0 on elements of A#X as follows: 0#6(a;) = 0(a;) for
any ¢ € {1,..., K}, 0#0(x;) = d(z;) for any ¢ € {1,...,L — 1} and
O#0(xr) = 6(xp) + ar. Denote by G#Z the set GU Z U{a;}. Clearly,
0#0 is an M-differential and the set G#Z consists of 0#d-trivial
elements. We denote M-pair Magx pay,cez 045 (B#Y = BUY) as
MA,B,G,(?#MX,Y,Z,J. We set M#O = M, O#M = M for any M—pair
M.

Clearly the operation described above induce the operation on classes
of similar equivalence, which we also denote by #. Operation # is
obviously associative.

Consider the following classes of similar equivalence:
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Proposition 5.9. Every non-zero undecomposable minimal pair of
complexes belongs to one of the following classes of similar equivalence:

Li#R (k +1 > 0), Lk#{k#Rl (k+1 > 0), Lkz#|o(k > 0),

One can prove that if Dy p ¢ contains an indecomposable minimal
differential 0, then Dy p contains unique totally decomposable
differential § such that H, (M, 9) = H.(Mas) and H(0) = H(J).
Since P satisfies properties (1), (2) and (5) of M-model Theorem. We
get the following:

Proposition 5.10. The map P satisfying M-model theorem 1is
unLque. U

It is easy to find explicitly the unique totally decomposable
differential 6 mentioned above. Hence, P could be defined directly,
using the classification of Proposition 5.9.

Let us associate to a totally decomposable differential ¢ the formal
sum S(6) = Zlfl n;M; where n; is a number of direct summands in
P(0) equivalent to glyph M; (we do not take grading into account).
If L is a class of similar equivalence of minimal differentials we define
S(L) = S(P(6)) for a 6 € L. Obviously, S(L) is well defined.

The following Statement describe S(L) for all classes of similar
equivalence of minimal indecomposable differentials. Let k,l € Z, .

Statement 5.11. S(m) = @, S(‘%) = %

L) =
I; S(Lator) = k + . S(Lajor) = Ej;
S(Lop#Riyo) = (K+1)

S(Litox#Riyar) = (k+1) S(Litox# Roror) = (k+1) ﬂ +

S(Latt 1) _kﬂj «\” LH%#«\” —kﬂj 7°,
S(Lok# /k #HRiio) = (k+1) m + % S(Lon# '/N/D #Roy01) =

(k+1) ﬁ + % + Ijj S(Lytorn# /\/}#lel) (k+1) ﬂj +

'% + %; S(L1+2k#/~/}#R2+2Z) = k?+l ﬂj + '% + ﬁ

(Lt |°) = k S e

s(° >=ﬂﬂ+ﬁ s(° k—k$+

I, S(Lor# Rytor) = (k+1) $ lj;

H%
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One can easily show (using Proposition 5.9) that any two similar
minimal differentials are equivalent. We say that a minimal differential
0 is distinguished if for any e € E, f € Fd € D b € B we have
(6(e), by, (6(d),by € {0,1} and (6(f),b) € {0,—1}. One can show
that for every 0 € Dy g there exists a unique distinguished minimal
differential in D4 p ¢ weakly equivalent to d. Denote this distinguished
differential Py, (9). Thus, by construction, the map P from M-model
theorem is a composition of Py, with a uniquely defined map from
distinguished differentials to totally decomposable differentials.

5.6. On different equivalency relations. It is easy to show that Dy p ¢
contains a finite number of totally decomposable differentials. Hence,
by Theorem 3.3, Dy ¢ is a disjoint union of finite number of G-
equivalency classes.

One can show using results of Sec. 5.5 that each G-equivalency class
is a disjoin union of a finite numbers of weak equivalency classes. The
map P itself generates an equivalence relation on Dy pg: O ~p O if
P(0) = P(01). This equivalence relation subdivides G-equivalence.

5.7. Proof of Lemma 5.7. The following Lemmas help to detect direct
summands of minimal differentials.

Lemma 5.12. Consider an M-pair Mapa,s, A= {a1,...,a,}. Let o
be a minimal differential.

(1) An element p € P appears in at most two vectors 6(a;), a; € A\
B. It appears in two such vectors if and only if p € G,p € H(0)
and p+ # hy(p). The element p does not appears in all §(a;) if
and only if p ¢ G and p ¢ H(5). In all other cases p appears
in one vector §(a;).

(2) For d € D the vector 6(d) contains at most two elements. It
contains two elements if and only if d = hy(p) and d = x for
some elements p € H(5), x in B such that p # x.

(3) For e € E the vector d(e) contains at most two elements from
the set B. The vector 6(e) contains two elements from B only
ifee Gy.

(4) For f € F the vector §(f) contains at most two elements from
the set B. Let e € E satisfies 04 5(¢) = f. The vector §(f)
contains two elements from the set B if and only if f € G4,
e € Gy, such that e = q4 for ¢ € Q and (6(q), f) is not a G-
pair. If f & Gy then §(f) # 0 only if e = q, for some element

q€Q.
(5) An elementr € R appears in at most two vectors 6(a),a € A\B.
Proof. 7777 left to reader O

Let & be a first case minimal differential.

Lemma 5.13. (1) An element r € R appears in at most one vector
d(a), a € A\ B.
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(2) An element q € Q appears in at most one vector d(a), a € A\ B.
If ¢ ¢ G then it appears in one such a vector if and only if
r=94(q €Gandry € F.

Proof. Consider an element r € R. If (6(a),r) # 0, for a € A\ B then
(r,a) satisfy to at least one of conditions of Lemma 5.2. Note that
there is at most one pair (r,a) which is not a G-pair and satisfying the
condition (4). Hence, if r ¢ G then r appears in at most one vector
d(a) for a € A\ B. If r € G then suppose that there are two elements
ai,as € A\ B such that (0(a;),r) # 0. One of pairs (r, ay) (1, az) satisfy
to the condition (1) of Lemma 5.2 and another satisfy to the condition
(1). Without loss of generality we can assume that a; = r,. Consider
element ¢ € @ such that §(¢) = r. Then (r,ay) satisfy the condition
(4) of Lemma 5.2. Since (r,as) is not a G-pair we get that ¢ € G and
0 is not a first case differential. This contradiction finishes the proof of
the first claim of Lemma.

Let ¢ € @ appears in two vectors d(a) for a € A\ B. Then q € G and
one of such elements a must be equal to ¢,. For the second element a
we have a € E and (d(q),04p) is a G-pair. Hence we J is not a first
case differential. O

We study all the various possibilities. Let A = {ay, ..., a,}. Consider
the sets P,Q, R, E,F,D and the map h, generated by §. In what
follows we consider a full tree of possibilities and study all its vertexes.
Instead of notations M; we will use corresponding pictures.

Firstly we split the further consideration into the following two
possibilities: (1) B # @ and (2) B = @.

Consider the case (1) firstly. We split the case (1) into (1.1) P # @
and (1.2) P = @. Consider (1.1). Let us fix p € P. We divide (1.1)
into two subcases (1.1.1) p € G and (1.1.2) p ¢ G.

Consider the case (1.1.1). We divide it in (1.1.1.1) p € H(J) and

(1.1.1.2) p ¢ H(9).
In the case (1.1.1.1) there are two possibilities p, = hy (p) and p, #

h(p)-

For the first possibility we have that the space spanned on p, hy(p)
is a direct summand. Indeed, d(py) contains the element p only by
Lemma 5.12(2). Hence E ® {p,h,(p)} is d-invariant. The element p
appears in d(a;),a; € A\ B only if a; = p; by Lemma 5.12(1). Since 0

is indecomposable we get: A = {p, p;} and M is similar to

For the second possibility we consider the element py and h(p) (see
notations on Fig??7). These elements satisfy inequalities p < p; <
hy(p) and p, € E because the possibility p, € D is impossible since d
is quasi-elementary and p, € F is impossible since 2 = 0. Hence the
set A contains at least four elements p, hy(p),py, 94\ p(py). There are

four new cases (00\5(p+) € G+, hs(p) € G4), (Ga\5(P+) € G4, hyi(p) ¢
G4), Oas(p+) € Gi,hy(p) € G) and (645(p+) € G4 he(p) € G4).
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We claim that in those cases ¢ is similar to A;, i € {1, ..., 4} respectively.
Let us prove the first claim, namely (04 p5(p+) € Gy, hy(p) € Gy)
implies M is similar to A;.

Since hy(p) € Gy hy(p) = ry for some element r. It follows
from the minimality of 6 that » € R and hence there exists ¢ € @
such that 6(¢) = r. Analogously there exist elements ¢ € Q,7 € R
such that §(¢) = 7 and 7y = Jd4p(py). By the assumption of
Lemma neither ¢ nor ¢ contains in G. The vector space spanned
on C' = {p,ps,hy(p),0a5(P+),¢7,G, 7} is a direct summand of 9.
Indeed, applying Lemma 5.12(3), 5.12(1) and 5.12(4) correspondingly
to elements p, h(p), 04 p(p+) We get 6(p1),d(h(p)), 0(6ap(p1)) €
E ® C. The value of ¢ on all other elements of C' belongs to £ ® C'
since § is quasi-elementary. Hence F ® C is d-invariant. Applying
Lemma 5.12(1) to the element p we see that p contains in §(a;),a; €
A\ B only if a; € C. By Lemma 5.13 elements ¢,r,§,7 contains in
d(a;),a; € A\ B only if a; € C. Hence E ® C is a direct summand
of Ms. Since § is indecomposable it follows that M is similar to A;.
Consideration of the remaining three cases is completely analogous to
the case considered. We are finished with (1.1.1.1).

Further considerations are similar to previous one. In each case we
construct a corresponding set C' and prove (using Lemma 5.12 and
Lemma 5.13) that £ ® C' is a direct summand of Ms;. We leave the
proof of last statement to the reader and only describe C' and answer.

Now we consider the case (1.1.1.2). For that case p, € E and there
are two possibilities 04 5(p1) € G+ and d4 p(p+) € G4. For the first

possibility we get C' = {p,py,045(p+)} and M; is similar to ﬁ
For the second possibility we consider r such that r, = 64 g(ps). The
element r belongs to R since 62(p; ) = 0, hence there exists ¢ € Q such
that d(¢) = r. The following inequalities holds r < d45(py) < ¢ <
p < py and C = {p,py,045(p1),q,7}. In this case M; is similar to

Consider the case (1.1.2)(p ¢ G). If p € H(0) we consider element

hy(p). If hy(p) ¢ G4 then C = {p, h.(p)} and My is similar to /N/D :
If hy(p) € G4 then hy(p) = ry for some element r € R. Hence there

exists ¢ € @ such that §(¢) = r. In that case C' = {p, hi(p),q,r} and

M is similar to .Ifp ¢ H(S) then C = {p} and M, is similar to

o

Now we consider (1.2) (P = @). In that case B contains at least two
elements ¢, r such that §(¢) = r. We fix such a pair of elements and
split (1.2) into four cases: (1.2.1) (¢ € G,r € G), (1.2.2) (¢ € G,r ¢ G),
(1.23) (¢ ¢ G,r € G) and (1.2.4) (¢ ¢ G,r ¢ G).
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In the case (1.2.1) we have d4,5(qy) = ry since J is a first case

minimal differential, C' = {q,7, ¢, r+} and M, is similar to ﬁ )
In the case (1.2.2) we consider element 4\ g(q+). If d4\p(q+) € G+

then C' = {q,7,q1,04 5(q+)} and M; is similar to M oapler) €
Gy then 64 p5(qy) = 7 for some 7 € R, there exists ¢ € @ such
that §() = 7, elements of the set C' = {q,7,q4,04 p(q+),q, G} satisfy
inequalities

r=<7=<00p(qr) <G=<q=<qr

and Mj is similar to ﬁ .
In the case (1.2.3) consider element 7. There are three possibilities:
ry € D,ry € Eandr, € F. For the first one we get C' = {q, 7,7, } and

M is similar to L . In the second case consider element 04 (7).
If 6A\B(r+) ¢ G+ then C' = {Q7Ta r+75A\B(T+)} and M(S is similar to

. If 6, p(ry) € G4 consider 7, such that 7y = 04 p(ry). Since
6%(r,) = 0 we have 7 € R and there exists § € Q such that §(q) = 7.

In that case C' = {q,7,74,045(r4),7, G} and M; is similar to ﬁ . In
the last subcase of (1.2.3) 7, € F' consider e € E such that d, g(e) = f.

Ifed¢ Gy C={qrry e} and M is similar to Ijj The possibility
e € G4 leads to either to already considered case of M-pair similar to

or to M-pair from (1.2.2) or to P # @.

In the case (1.2.4) C' = {q,r} and M; is similar to I| It finishes
the consideration of (1). The case (2) is very short: either A is one

element set and M is similar to |° or A is a set of two elements and

Ms is similar to |I .
The proof of Lemma 5.7 is finished.

5.8. Proof of Lemma 5.8. We are proving Lemma 5.8 for the case
n € Gyo. By PQ,R,E,F,D and h, we denote sets and the map
generated by 9.

First of all we prove that ¢’ = §'(9) is M-differential. In order
to prove that ¢ is M-differential we must show that ¢ satisfies
the “decreasing order” (see sec. 2.7) on such elements a € A that
d'(a) # d(a). Since 0 is quasi-elementary 0'(a;) # 0(a;) for an element
a; € Aonly if a; € {ry,n} or §(a;) contains either r, or n.

Let us show that ¢’ satisfies the “decreasing order” on r,. Indeed,
§(ry) =9d(n—vq) = d(n) — 7. By Lemma 5.12(4) §(n) = 7 + Or.
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Hence §'(ry) = Or and ¢’ satisfies the “decreasing order” condition on
Ty

Let us show that ¢’ satisfies the “decreasing order” on n. Indeed,
d(n) =0(ry —ag+~q4) = 0(ry) —ar+~7. Since ry < n and J satisfies
the “decreasing order” condition on 7, §'(n) contains only elements
less then n.

Since ¢ is quasi-elementary the element n appears in a vector
d(a),a € Aif and only if a = ¢4. Let us show that ¢’ decrease order on
¢+. Indeed, by Lemma 5.12(3) and Lemma 5.1 §(¢) = n —v§ — (q.
Hence &'(q+) = S(n —vq — Bq) = 4 — Bg, since S(ry) = n + 4.

Element 7, appears in a vector §(a),a € A only if ry € F. In that
case there exists a unique element e € E such that d4 g = r,. Element
e bigger then ¢, . Indeed, by Lemma 5.1 ¢ < e and e # ¢, since d 4\ g is
elementary. Hence, §'(e) = d(e) —ry+S(ry) =d(e) —ry +n+aqg—~4q.
The latter implies that ¢’ satisfies the “decreasing order” condition
on e. Hence ¢’ is an M-differential.

Let us show that ' € Dy p . Let ry € F. Consider a G-pair (x,x4).
Ifz, ¢ {ry,n,q., e} then d'(z,) = d(z;) and z is §’'-trivial element. If
x4 € {ry,n,qs} then x is a ¢'-trivial element by computations of ¢'(z )
above. If e = x4 for x € G then ¢, < z and by Lemma 5.12(3) and
Lemma 5.1 d(e) = 7 — ag + 14 for 7 # 0. Hence, d'(e) =17 —vGd+n
and (z,e) is ¢’-pair. Thus ¢’ € Dy p -

M-differential ¢’ is quasi-elementary. Indeed, §3 = dp, §j0A\ B =
Té0A\ B where T is a transposition sending n to r,.. Hence d’g, (5’A\B =
T'6 4\ p are elementary differentials. For elements p € P, d € D\ {r,}
(0'(d),p) = (6(d),p). It proves that that ¢’ is quasi-elementary and
hi(6") = hy(0) in the case . ¢ D. If r, € D then hy(0") = Thy(9).

Differential §’ is decomposable. Let us show that E ® {¢,r,7:,q;}

is a direct summand. (This summand, in fact, is similar to It
is the place in the proof where we use minimality of 0.) The subspace
E® {q,r,r,q.} is §-invariant by computations above. The element
q appears in 6(a) for a € A only if a = ¢, by Lemma 5.13(2). Hence
q appears in ¢'(a) for a € A only if a = ¢,. The element r appears
in d(a) for a € A\ B only if a € {r,n} by Lemma 5.12(5). Hence,
using the above computations we get that r appears in ¢’(a),a € A\ B
only if a = ry. The set A\ {q,r,74,q+} contains the element n and
therefore non-empty. It proves that ¢’ is decomposable.

Differentials 6] = ¢'(d1) and 05 = 6’(d2) are similar if d;, d5 are similar.
Indeed, if ¢}(z) contains v for x € A\ B,v € B then §)(x) is also
containing v. For = ¢ {q.,r,,n,e} it is true since d.(z) = &;(z),i €
{1,2}, for x € {q.,r,n,e} it follows from the above computations.

To prove Lemma for n ¢ G it is sufficiently to substitute v = 0
into the proof for the case n € GG above. The proof of Lemma 5.8 is
finished.
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6. GRAPH AND COLORINGS

Consider the finite graded linearly ordered set B (grading is a
function deg: B — 7Z ). We suppose that B is equipped with
a decomposition into disjoint union of pairs of elements and single
elements. Let G be a subset of B, H be a subset of the set of
all single elements in B. Any M-differential 0 € Dy p ¢ generates
such a combinatorial structure, where decomposition of B is the
decomposition in dz-pairs and dz-homologically essential elements and
H = H(0) is a set of all boundary essential elements (see 7777).
Motivated by this example we call pairs from the decomposition of
B into disjoint union of pairs and single elements by 0z-pairs and we
call single elements 0g-homologically essential elements.

Let (dy)rez be an auxiliary data — collection of nonnegative integers
such that all of them but finite number are zero. In such a situation
we define the graph I' = I'( B, G, H, (dy.)rez) as follows.

6.1. Definition of vertices. The graph I' = I'(0, G) has vertices of five
different graded types Ay, B, Ci, Dy and Ei, k € Z.

(1) Let (b;, b;), i > j be a Op-pair, such that b; € G, b; ¢ G. To each
such a pair we correspond a vertex in the graph I'. We say that this

vertex is the vertex of type Ay (or Ufk), where k = deg(b;).
(2) Let (b;, b;), i > j be a Og-pair, such that b; ¢ G, b; € G. To each
such a pair we correspond a vertex in the graph I'. We say that this

vertex is the vertex of type By (or ﬁk), where k& = deg(b;) + 1.
(3) Let b; € G be 0g-homologically essential element, such that b; ¢
H. To each such an element we correspond a vertex in the graph I". We

say that this vertex is the vertex of type Cy, (or % 1), where k = deg(b;).
(4) Let b; € H(0) satisty b; ¢ G. To each such an element we
correspond a vertex in the graph I'. We say that this vertex is the

vertex of type Dy, (or %k), where k = deg(b;) + 1.

(5) For each k the graph I' contains dj, vertexes of type E.

We say that the number k£ above is a degree of a vertex. The degree k
of a vertex v we denote by k(v).

6.2. Definition of edges. Two vertexes of I are connected by at most
one edge. All edges of the graph I' are oriented. Each edge starts at
a vertex of the type A for some k and finishes at a vertex of degree
k + 1. Consider a vertex (b;,b;) of the type Aj. There are following
possibilities only:

(1) The vertex (b;, b;) is connected with a vertex (b, by,) of the type
Ay if and only if i < m.

(2) The vertex (b;, b;) is connected with a vertex (b, by,) of the type
Byii if and only if i < I,m < j.

(3) The vertex (b;, b;) is connected with a vertex b; of the type Cyiq
if and only if 7 < [.
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(4) The vertex (b;, b;) is connected with a vertex b, of the type Dy4q
if and only if [ < j.

(5) The vertex (b;, b;) is connected with each vertex of the type Ej1.

The construction of the graph I' is finished.

For 0 € Djpe we define the graph I'(0,G) to be I' =
['(B,G, H, (dy)rez), where di is the dimension of the kernel of the
connecting homomorphism Hy(M g, Mpg,) — Hp_1(Mpg,) from
the long exact sequence of the pair (M4 5, Mp g, ).

6.3. Remark. Inequalities from the definition of edges (1)—(4) mean
that the considered in the definition vertex of the type Ay and the
vertex of the type Agi1 ( Bgs1, Cri1, Dit1 respectively) could be left

part of a corresponding glyph: i @ ﬁ % respectively).

The vertex (b;, b;) is marked on these plctures

6.4. Colorings of the graph I". Admissible polynomials. Consider the
graph I' = I'(B, G, H, (dy)kez). A matching of a graph is a collection of
edges without common vertexes. Consider a matching 3., denote by Vs
the set of all vertexes of I' which are not ends of edges from . We say
that s: Vs, — {0,2} is an admissible map, if for any k and any vertex
v of type By, Cg, Dg or E; holds s(v) = 0. A coloring of the graph T’
is a pair (X, s) of a matching and an admissible map.

We correspond to a coloring (X,s) of I' a polynomial Py 4 by the
following rule. To a vertex v € Vs we assign the monomial tF(*)+s(v),
We define the polynomial P, to be a sum of all the monomials over
Vs it Vs # o, if Vs = @ we define Py to be zero polynomial.
We call such a polynomials as admissible polynomials. The set of
all admissible polynomials we denote by Ppgm(B,G, H, (di)kez). If
I' = I'(0, G) we will also denote the set of admissible polynomials by
Pram (0, G). Obviously, the set of all colorings of I' and, hence, the set
of all admissible polynomials is finite.

6.5. Isomorphism between graphes. Consider two triples of (A D B D
G) and (A’ D B D @) of finite linearly ordered graded sets. We assume
that the grading and order on B induced from A and from A’ coincide.
Let 0 € DA7B7g, J e DA/737g.

Lemma 6.1. Suppose that Op is equivalent to Oy, H(0) = H(J'") and
H*(MA,aaMB,aB) ~ H*(MA’,0'7MB,%)7 H*(MA,B) ~ H*(MA',a’)-
Then there exists an isomorphism I'(0,G) — T'(0', G) which preserves
the type of vertexes.

Proof. Indeed, the graph I'(0, G) was constructed by dp-pairs, the set
H(0) and the numbers di. Since g ~ 0z we have H,(Mp,) =~
H,(Mpg, ). Therefore, it is sufficient to show that the numbers d

depends on H*(MA,Q, MBaaB>7 H* (MA,G)a H*(MB,8> Ol’lly.
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Consider Poincaré-Laurent 7?7?  polynomials P(M 9, Mg g, ),
P(Myp) and P(Mpy,) which are equal > dim Hy(M 4 5, Mp 5. )tF,
> dim Hy(M 4 9)t" and Y dim Hy(Mp 5, )t* correspondingly.

Denote by i;_; the dimension of the image of the map
Hi(My g, Mpo,) — Hi_1(Mpg,) from the long exact sequence of
the pair (M, 9, Mp s, ). Consider Laurent polynomials D, I defined
by D(t) = " dit*, 1(t) = Y ixt*. Lemma 6.1 follows from next Lemma.

Lemma 6.2. The polynomials I and D satisfy the equalities:
1
P(MA,(% MB,(?B)(t) = D<t> + ;I(t)v

P(Mpp)(t) + P(My g, Mp g, )(1) = P(Myp)(t) + 1(1)(1 +1).

Proof. Indeed, dim Hp(M g, Mps,) = di + ir—1. It is equivalent
to the first equality. Let [, be the dimension of the image the
map Hy(Mp,y,) — Hp(Mya,) from the long exact sequence of the
pair (My 5, Mp,,). Exactness of the long exact sequence implies
dim Hk(MB,BB) = Zk -+ lk, dim Hk(MAﬁ) = lk + dk Hence,

dim Hk(MB,(?B) + dim Hk<MA,87 MB,BB) = dim Hk(MA,a) -+ Zk -+ Z'kfl,
which is equivalent to the second equality. O

The following lemma is an obvious corollary of Lemma 6.1.

Lemma 6.3. If differentials 0, O satisfy the assumptions of
Proposition 6.1, then Paam(0, G) = Paam (9, G). O

6.6. The construction of colorings from M -differentials. We are going
to construct a distinguished coloring of the graph I'(0, G).

Consider the M-model P(9) of a M-differential 0 given by
Theorem 3.3. We label each glyph by the smallest degree of its basis
elements. We define a map ¥ from the set of vertexes of I'(0, G) to the
set of glyphes from P(9) as follows:

Each vertex of the type Ufk, ﬁk, “Jfk or %  naturally corresponds
either to a single element or a pair of elements of the set B. This
element or a pair of elements is a part of a basis of a single glyph from

P(0). Let ¥ maps each vertex of the type Ufk, ﬁk, Jfk or ’kk to a
glyph from P(0), such that its basis contains the elements generating
the vertex. Thus, ¥ is defined on all vertexes of types Ay, Bg, Cr and
Dx. Now we define ¥ on vertexes of the type E.

The number dj, from the definition of the graph I'(9, G) is equal to

the number of all glyphes of types L k—1, |°  from P(9). Denote

by N; the set of all glyphes of types L k1, |° p from P(0). We
somehow fix bijections vy : Ex — Nji. Let W coincides with ¢, on Ej.
The construction of ¥ is finished.
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The glyphes of type I | ,° | , |I , ﬂ , % from P(9) do not belong

to the image of U. Each glyph of the type /N/D ﬁ , ,
° is the image of a single vertex of I'(0, G). Each glyph of the type

% ﬁ ﬁ Llﬂ i is the image of two vertexes. Let us

define the collection X(0) of edges of I'(0, G) by the condition: an edge
belongs to X if and only 1f images of its ends under ¥ coincide.
Let us define s(9): V& — {0,2} such that the set s7!(2) is a

preimage under ¥ of the set of all glyphes of the type ﬁ Obviously,
(33(0), s(0)) is a coloring of I'(0, G).

The coloring (X(0), s(9)) depends only on choices of bijections .
Obviously, the polynomial Py 59y = P(0) is independent of that
choices.

6.7. Decomposition of Morse polynomial. 1t is easy to see looking on the
construction of the polynomial P(9) that P(9) equals to the polynomial

;<# Lhk ok+#ﬁk+#ﬁjk—l+#*k—l+#Ijjk—2>tk7

where # is used to denote the number of corresponding glyphes in
M-model of 0.

Comparing this expression with the expression for Morse polynomial
Py (0,G)(t) (see sec. 3.8) from Proposition 3.4 we get the following
theorem.

Theorem 6.4. Morse polynomial Py (0,G)(t) is canonically
decomposed into the sum of the admissible polynomial P(0) and
a polynomial (1 + t)K(0)(t), such that all coefficients of K(J) are
nonnegative integers. Moreover

K@) =Y (#]1 )
U

6.8. Weak Morse inequalities. Consider an M-differential 0 € D4 p .
Recall that we denote the number of vertexes of a graph I' by v(I")

and m(T") denotes the doubled maximal number of edges in a matching
of T.

Lemma 6.5. The number of elements in A\ (BUG..) is greater than
or equal to v(I'(0,G)) —m(I'(0,G)) = . min  P(1).

EPAdm(arG)
The number of elements in A\ (BUG,) of degree k is greater than

or equal to #By, + #Cy + #Dy + #Ex — #Ax_1, where # denotes the
number of corresponding vertezes of I'(0, G).
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Proof. Indeed, the number #A \ (B U G4) equals to P(9)(1) +
(1 + t)K(0)(t)|t=1 by Theorem 6.4. The number P(0)(1) equals
to the number of elements in Vyp C #A \ (B U Gy), where
¥(0) is a distinguished matching constructed above. By definition
#Vs) = v(I'(0,G)) — 2#X(0). First claim of Lemma holds, since
(14 t)K(0)(t)|;=1 is non-negative.

The number of elements of degree i in A\ (BUG, ) is greater than or
equal to the coefficient of t* of P(9) by Theorem refMorsedecomp. This
coefficient, by definition of P(9), equals to the number of vertexes from
V9 such that s(0) takes value k. The admissible map s(0) takes value
k on each vertex of the type By, Ci, Dy or E; from Vs by definition.
The number of edges of any matching having one end in the union of
vertexes of the type By, Cg, Dy or Ej is at most #Aj_; since all such
edges start at vertexes from Ay ;. It proves the second claim. O

6.9. All colorings are induced by an M -differential. An M-differential
0 € Dapc generates a graph I'(0,G) and distinguished coloring
(3(0), s(0)). Consider (another) a coloring (X, s) of I'(0, G).

Lemma 6.6. There exists linearly ordered set A" containing B (the
order and grading induced from A’ on B coincides with the order and
grading induced from A) and differential &' € Da g such that
(1) 0p ~ 05, H(O) = H(), H.Map) ~ H.(Map),
H*(MA,8> MB,aB) ~ H*<MA’,8’7 MB,%);

(2) M-model of ' does not contain glyphes of type |I ;
(3) (2,s) = (X(0'),s(0")) after a suitable natural isomorphism of
Lemma 6.1.

Proof. Consider firstly the case of empty matching > and zeroes
admissible map s. We will assume that 0 is totally decomposable.
To construct 0" we change glyphes in 0 as follows. Edges in ¥(0) are

in one-to-one correspondence with glyphes of types H? , ﬁ , Ej ,

=~ and ﬁ . We replace somehow each such a ﬁyph by two glyphes:

7°by/\”andHﬁ,ﬁw“ﬁmd%,

Lﬂ by |° and % and by two % Vertexes in s(9)71(2) are

N il

by and QI ,

in one-to-one correspondence with glyphes of type Ijj We replace

somehow each of these glyphes by a glyph of the type . At last,

we cancel all glyphes of type |I Note that this operation on 0 is
not unique, since an order on A’ is not uniquely defined. However,
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the resulting differential 0y, obviously, has the same graph and empty
distinguished matching and zeroes admissible map.

To obtain the differential with an arbitrary coloring we change the
glyphes of by 0z by obvious “inverse” rule to the rule described above.
Obviously, this operation does not change the graph and homological
properties of the differential. Il

7. PROOF OF GENERALIZED MORSE INEQUALITIES.
COMBINATORIAL STRUCTURE ON THE SET OF CRITICAL POINTS.

7.1. Construction of the set Pg(f, M). Starting from the topological
data of sec. 0.4 we construct the set Pg(f, M) of sec. 0.1. We continue
in notations of sec. 0.4.

Let f be a strong Morse germ on a boundary M of the compact
manifold M.

Consider the graded finite set By = {¢; < ... < ey} of critical values
of function g = f|sns, grading is a mapping to Z, ¢; — deg(c;), where
deg(¢;) is the Morse index of g in the corresponding critical point (see
sec. 2.9). Denote by Gy C By the set of values of ¢ at all outward
critical points of g. This construction depends on the part (2) of the
topological data only.

Denote by OM® the sublevel set {z € OM|g(x) < a}. We say that
two critical values ¢; < ¢; of g generate a pair if

dim H,(0M®+ OM®) = dim H,(OM®+*,0M“+) — 1 =
= dim H,(0M%, 9M*+) = dim H,(OM® ,0M®) — 1.

It turns out, that any critical value of g could be a member of at
most one pair and (¢;, ¢;) is such a pair only if deg(c;) = deg(c;) + 1.
Thus, By is decomposed into disjoint pairs and single elements. This
decomposition uses the part (3) of the topological data only.

We define Hy C By to be the set of all boundary homologically
essential critical values of g (see sec. 2.10). Definition of a boundary
homologically essential critical value require the part (4) of the
topological data only. It turns out that set Hy of all boundary
homologically essential critical values is a subset of the subset of all
single critical values in By.

Let us define a number dj, to be equal the dimension of the kernel of
the connecting homomorphism Hy(M,0M) — Hp_1(M). Consider
the graph I'(By, Gy, Hy, (dk)rez) constructed in sec. 6.1, 6.2. We
define I'g(f, M) to be equal I'(By, Gy, Hy, (di)kez) and Pg(f, M) from
Theorem 0.1 to be Ppym(By, Gy, Hy, (d)kez), which is defined in 6.4.

7.2. Examples. Consider a germ f along the boundary of closed interval
M from Sec. 0.3. The corresponding graph I'g(f, M) has two vertexes:
vertex of the type Cy and vertex of the type D;. Hence, I'g(f, M)



MORSE THEORY ON MANIFOLDS WITH BOUNDARY 43

has no edges and Pg(f, M) = {1 +t}. For a closed manifold M the
graph I'g(f, M) has no vertexes of types A, B, C and D, the number
of vertexes of the type Ey is equal b (M). Thus Pg(f, M) consists of a
single polynomial, which is a Poincaré polynomial of M.

7.3. Let us prove that the combinatorial structure on B introduced
above is sound. Let F' be a strong Morse function extending the germ f.
Consider a Morse chain M (see sec. 2.3) of the function F', containing
a chain of inclusions of C'W-pairs (X, Yy) C ... C (Xaon, Yon) and a
filtered homotopy equivalence h: (M,0M) — (X,Y). Let Mu, 5,0
be the corresponding algebraic model (see sec. 2.9) (The set Bp is in
a natural one-to-one correspondence with By). The map h induces
an isomorphisms between singular homologies of a pair (Ffi, Faaj) and
cellular homologies of a corresponding pair (Y3, Ys;) for any i > j.
Last homologies are exactly the homologies characterizing 0-pairs by
Lemma 4.2. Thus, any dp,-pair naturally is a pair defined in sec. 7.1
and vice versa.

Analogous consideration shows that boundary homologically
essential critical values coincide with the values of F' on 0-boundary
homologically essential elements of Bp defined in sec. 3.1. By
Lemma 4.3 any homologically essential critical value is not a member
of O-pair.

Applying considerations of Lemma 6.2 it is easy to see that numbers
dr depend on the part (1) of the topological data only. Therefore,
combinatorial structure of sec. 7.1 is well defined.

2270007777777 Skazat’, chto graphy sovpadayut!!! Moreover, the
graph I'g()

7.4. Algebraic model. Let F' be a strong Morse function on a compact
manifold M. Consider an algebraic model (with coefficients in E)
My, Bp.o of F,let Gp be a set of all outward critical points of F|gas.

Lemma 7.1. Fach element of G is O-trivial element.

Proof. Consider b € Gr. Let F(b) = ¢; in the notations of sec. 2.3. An
element b, next to b in Arp does not belong to Br by the definition
of Ap. The element b, corresponds to a cell attaching to the pair
(Fa,_, UF2,F?) by Proposition 2.1(3). By Proposition 2.1(3) the set
F,, , is a strong deformation retract of F,,. Thus H.(Fy,, F,, ,) =0
and hence 9(b, ) contains b. O

The following Lemma deduces immediately from Lemma 7.1.

Lemma 7.2. Let f be a strong Morse germ and F be a strong Morse
function extending f. For any algebraic model Ma, p. o with E-
coefficients the graph I'(0, Gr) is naturally isomorphic to Tg(f, M).

Proof. Definitions for these graphs coincide up to replacement By by
BF, Gf by GF and Hf by H(@) ]
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We summarize useful properties of an algebraic model in the
following Proposition.

Proposition 7.3. Let F' be a strong Morse function on (M,0M),
Ma, Br.cro be an algebraic model of F'.

(1) For any i Hi<MAF,8> MBF,aBF) = H’L<M7 8M)7
Hi(MBF,aBF) = HZ(aM), H1<MAF,3) = HI<M)7

(2) An M-complex Mgy, oy, is an algebraic model for a function
Floar and, therefore, depends (up to the equivalence) on that
function only;

(3) Any element of the set Gp C Bp, consisting of all outward
critical points is O-trivial;

(4) The set Hp C Bp, consisting of all boundary homologically
essential critical points of the function F|ay, coincides with the
set of all boundary homologically essential elements of the pair
May.Bp,o

(5) An algebraic model of a function F' is naturally isomorphic to a
suitable algebraic model of a function o Foyp, wherey: R — R
18 a preserving orientation diffeomorphism and ¢: M — M is a
diffeomorphism. The isomorphism class of an algebraic model
preserves while F' continuously deforms in the space of all strong
Morse functions. O

7.5. Combinatorial structures. M-differential 0 of Ma, 5, s belongs
to Da,. Bp,cr by Lemma 7.1, therefore we can apply M-model theorem
to it. The corresponding M-model P(0) is independent from a choice
of an algebraic model by Statement 2.9.

Each critical point of the function F'is a basic element of a unique

glyph of types |I, /N/D , ﬁ , , , and |° from P(9).
We define Addg(F) C Crit(F) mentioned in sec. 0.1 to be all critical

points of F’ which are basic elements of glyphes of the type | I . The set
Topg (F) is, by definition, a complement to Addg(F). The set Addg(F)
is naturally decomposed into disjoint union of pairs of critical points
having consecutive Morse indexes, since the basis of a glyph of the type

|I consists of two elements of consecutive degrees. The set Topg(F)
carries natural disjoint decomposition according to type and degree of
corresponding glyphes.

7.6. Proof of generalized Morse inequalities. Theorems 0.1, 0.1, 1.1
and 0.2. Let us prove Theorem 0.1.

Let F' be a strong Morse function F' on M extending a strong
Morse germ. Let 0 be a differential of an algebraic model of F.
Decomposition of Theorem 6.4 of Morse polynomial of 0 into the
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sum of two polynomials coincides with the decomposition of the
Morse polynomial P(F") corresponding to the decomposition Crit(F') =
Topg(F) UAddg(F). First summand belongs to the finite set Pg(f, M)
constructed above. Theorem 0.1 is proved.

Number of critical points (of index i) of a Morse function equals to
the value of its Morse polynomial at 1 (coefficient of ¢ in its Morse
polynomial, respectively). Any Morse function having a strong Morse
germ along the boundary could be slightly perturb without changing
its critical points and its germ along the boundary to the strong Morse
function. Therefore, Theorem 0.2 is a corollary of Theorem 0.1.

Theorems 1.1 and 0.2 are obvious corollaries of Lemma 6.5 applied
to an algebraic model of suitably perturbed Morse function.

7.7. Remarks. (1). Consider the space of all functions extending a given
strong Morse germ. Let F'(t)yc[—1,1) be a generic path realizing a “birth”
of two critical points at t = 0 and such that for any ¢ # 0 F(¢) is a
strong Morse function. Consider a natural injection ¢: Crit(F(—1)) —
Crit(F' (1)) generated by a unique continuous extension of critical points
of F'(t) along the path F(t);c[-1,1. One can show that newborn pair
of critical points lies in the additional subset and forms a pair in it,
moreover, an image under ¢ of Topg(F(—1)) is Topg(F(1)) and an image
of any pair from Addg(F(—1)) is a pair in Addg(F(1)).

(2). The definition of sets Topg(F) and Addg(F) is a product
of M-model theorem applied to a differential of an algebraic model
of F. One can vary, in a natural way, M-model theorem and it
leads to another admissible and topologically essential sets, another
decomposition of Morse polynomial of the function F' which are also
“canonical”. For example, consider the map Ppi, from sec. 5.5 and
apply it to a differential from an algebraic model. The resulting
minimal differential contains direct summands, which are glyphes of

|I One can call critical points from the union of bases of such
summands by additional critical points and its complement in the
set Crit(F') by topologically essential critical points. Let us denote

this sets as Addg(F) and Topg(F) correspondingly. The disjoint

decomposition Crit(F) = Topg(F) U Addg(F) leads to decomposition
of Morse polynomial into two summands. It is possible to explicitly

—~—

construct the corresponding finite set Pg(f, M) and the summand

—_——

generated by Topg(F) belongs to Pr(f, M).

One can show that newborn pair from a family of functions of
the first remark is pair of additional points (in that local sense)
also. So, that varying of the definition is natural. But, obviously,

P

Addg(F) C Addg(F) and each pair from Addg(F) is a pair from
Addg(F). Moreover, Pg(f, M) C Pg(f, M) and any polynomial from
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Pe(f, M) is a sum of a polynomial from Pg(f, M) with a summand
(1 + t)k(t), where all coefficients of k are non-negative. Therefore,
the resulting Morse-type inequalities in Arnol’d problem coincide with
inequalities given by M-model theorem.

Instead of considering P;,q one can consider a composition of Pi,q
with subsequent applying of P to direct summands of certain types
in distinguished differentials. It leads to another additional and
topologically essential sets.

(3). Let us describe a manifold M and a strong Morse germ f along
OM such that Pg(f, M) consists from more that one element and there
exists strong Morse extensions F and F» such that polynomials Pg(F})
and Pg(F») are not coincide. Such a situation does not realize for
dim M = 1, the simplest example of such a manifold is two-dimensional
disk.

Consider a strong Morse function F' with two local maximums, one
saddle and one minimum on the sphere S2. Let U be sufficiently small
open round neighborhood of a saddle. Manifold M is a complement
of U. For a generic U the germ of F' along OU = 0M is a strong Morse
germ. Let f be such a germ. One can show that Pg(f, M) = {2+, 1+
2t?} for any E. Obviously, Pg(F|);) = 1+2t* and Pg(H) = 2+t%, where
H is an extension of f with two local minimums and one maximum.

8. CLASSICAL AND GENERALIZED MORSE INEQUALITIES.
ARNOLD’S EXAMPLE.

In this section we prove that generalized Morse inequalities of
Theorems 0.1 and 1.2 are not weaker then classical Morse inequalities
consider Arnold example??? in details.

8.1. Classical and generalized Morse inequalities. Let us fix a strong
Morse germ f along the boundary OM of a compact manifold M.
We show that for any P € Pg(f, M) there exists a polynomial @
with nonnegative integer coefficients such that P(t) = Pg(M)(t) —
P_(f,M)(1) + (1 + )Q(1).

A polynomial P is, by definition, generated by a coloring (3, s) of
the graph I'g(f, M), P = Pgs. The graph I'g(f, M) by Lemma 7.2
naturally isomorphic to a graph I'(9, Gr), where 0 is a differential of
an algebraic model My, g, s of a strong Morse function extending F'.

By Lemma 6.6 applying to O there exists a linearly ordered set A’
containing By and an M-differential § € D p, g, such that (¥, s) is
a coloring generated by 0 (see sec. 6.6) and homologies of § coincide
with homologies of M. We may assume that ¢ is totally decomposable
and use its glyphes to calculate polynomials Pg(M)(t) — P_(f, M)(t)
and P. The polynomial Pg(M)(t) — P_(f, M)(t) equals to
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S (# i T | | o] )i
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+#,k)t’“+z +#ﬁ +#H¢ ﬁkltmﬂ _
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—Z | +# 0 +# b +#ﬁ_l (L4 1),

while P equals to:

Ok+# ﬁk—i_# Ijljlg—l—i_#é ./\/]k—l—i_# ﬁk—Q)tk

The difference P — (Pg(M) — P_(F,dM)) is equal, obviously:

+Z +#@ +#%¢ +#ﬁ (1 41).

Hence, generalized Morse inequalities of Theorem 0.1 are not weaker
then classical Morse inequalities.

Consider now classical weak inequalities my(F) = bE(M)—m?(f, M)
and inequalities of Theorem 1.2. Let 0 be a totally decomposable
M-differential calculating the homology of M generating coloring of
the graph I'g(f, M) with empty matching and zeroes admissible map.
Such a differential was constructed in the proof of Lemma 6.6. By

construction ¢ has no glyphes of types j;% , ﬁ, @ , % , ﬁ

and

Pt =3 (# H 4
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In terms of glyphes of §:
bEM: o o
e(M) = # k+# k+#ﬁk’
m(f M) =#]| +#]|  +#-

k+#*k+# me#%k_l’
wio=#l=# 1 #o=#Ti=#f]

D= # = #E=# | paci=#l =l
k k k-1
Therefore, the difference

#By, + #Cp, + #Dy, + #E), — #A5 1 — (VE(M) — my(f,0M))

equals to

R IS S JEe (=

and hence non-negative. It proves that inequalities of Theorem 1.2 are
not weaker then classical weak Morse inequalities.

8.2. Arnold’s example.
The following statement claims that inequalities of Theorem 0.1 gives
good result for Arnold’s example (see sec.???)

Statement 8.1. Let M™™! (n > 0) be a closed manifold, F be a
strong Morse function on M"Y containing all its critical points in an
embedded closed ball B** C M™*'. Suppose, that a germ of F along
OB™1 = S" s a strong Morse germ.

For any P € Pg(f, B") there exists a polynomial Q with non-
negative coefficients such that

P(t) = Pe(M) + (1 +t)Q(t).

Proof. We denote by M; the manifold (M™+1\ B™) U S", by F we
denote the restriction F'|y;,, f denotes a germ of F' along S™ and h
denotes the restriction F'|gn. Points of global maximum and global
minimum of h are only homologically essential critical point of h since
the homologies of S™ are two-dimensional.

The point of global maximum (minimum) of h is inward (outward,
respectively) directed for f (considered as a germ on the boundary
of B"1) since F' has no critical points. All other critical points of
function h is decomposed into disjoint pairs. Hence, the set Vr of

all vertexes of I' = T'g(f, B"™!) contains one vertex of type ’k ntls

corresponding to the global maximum of h, one vertex of type 7,
corresponding to the global minimum of A, and all other vertices are
of types A or B, since for B"*! all d;, are zero.

Let (X,s) be a coloring of I'. Recall, that we denote by Vg the
complement to the set of ends of edges from . Consider a linearly
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ordered set A containing By and totally decomposable differential 6 €
D, g, constructed in Lemma 6.6 such that 0 does not contain glyphes

|I and generates (X, s). By definition

P(t) = Z pdeg(a) _ Z (deg(v)+s(v)

a€A\(BfU(Gf)+) veVx

We will explicitly split ZaeA\(Bfu(Gf)+) tdee(@) into a sum Pg(M) + (1 +
)Q(t).

We note that § does not contain glyphes of types H?, ﬁ,

Lﬂ and |° . Indeed, H? is impossible, since it must contain
global maximum, which is the unique boundary homologically essential
critical point, but it contradicts maximality. Analogously, glyph of type

o

1 must contain global minimum, which contradicts with minimality.

Glyphes % and |° are impossible, since they contributes into relative
homology, but relative homology of disk are of dimension one and

contains in a unique glyph /k generated by global maximum of
h. Therefore, vertexes corresponding to global maximum and global
minimum of h belong to Vs.

We will describe Vs in terms of the following mapping ny: Vr — Vr.
We set ny(v) = v for vertices generated by global maximum and global
minimum of h. Each inward (outward) critical point of f|gn relatively
B™*1 is outward (inward, respectively) critical point of f|g» relatively
M;. Hence, there is a natural correspondence between vertexes of

type u’k in I' and vertexes of type ITkJrl in I'(f, M;). Similarly there
is a natural correspondence between vertexes of type !l x+1 in I' and
vertexes of type u’k in I'(f, My).

We define ny(v) for a vertex v of the type ka The vertex v
corresponds to a vertex u; € V(s of type ITkJrl in I'(f, My). Since

F has no critical points, uy is a part of a glyph of type in M-model

of F. Consider a vertex uy € V() of the type Ufk contributing in
this glyph. This vertex corresponds to a vertex u € Vr of the type

k+1. We set ny(v) = .

If v is a vertex of the type ﬁk-{—l then we set ny(v) =vifv € Vy. If

v ¢ V5 then v contributes in a glyph of type ﬁ from 9. This glyph

contains a vertex u € Vr of the type “x We set ng(v) = u.
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Note, that if ny(v) # v and v = (b;,b;), @ > j, then ny(v) = (b, by)
for some n, m such that ¢ > m > n > j. It implies that ny, does not have
periodic vertexes of (minimal) period greater then one. The second
remark is the following: preimage of a vertex v under the mapping >
contains at most one vertex differs with v. Therefore, Vi decomposes
into the disjoint union of following chains. We call an ordered subset
{v1,...,v4} Y-chain if either k = 1, v; = nx(v1) and ng'(v1) = {v1} or
k>1,n5'(v1) = @, ng(v;) = vip1 # v; for i < k and nx(vy) = vg, we
say that £ is a length of a Y-chain. We conclude, that Vi decomposes
into the disjoint union of -chains.

Each -chain contributes one or two monomials into the
Y e A\(BU(G)+) tdee(@)  Global maximum and minimum generates Y-
chains of length 1 and these chains contributes monomials ¢"*1 and ¢°
into the P(t) = 3~ a\( ByUG)1) tdee(@) - Consider now all other Y-chains

only. For any vertex v of the type Ek for some k, nx(v) # v. Thus, each
of chains under consideration ends at a vertex from V5 and this vertex

corresponds to a glyph of the type in §. Consider now all chains

starting from a vertex of ITkJrl. Each this chain contributes an exactly
one monomial t**1 into P(¢). Suppose now that M"*! is orientable
either char(E) = 2. In that case the global maximum of h contributes

in a glyph of the type '% of M-model of F , and M-model of F does

not contain glyphes of the type ﬁ . Hence vertexes of type Hk‘—‘rl
which starts Y-chains are in one-to-one correspondence with vertexes

of type u’k of I'(f, M) which are contributes in glyphes of types m

and_ ﬁ only. The number of glyphes of type L r in M-model
of F equals to b, (M) for k € {0,n — 1}. Hence X-chains starting
from vertexes corresponding to these glyphes contribute > | b(M)

into P(t). Each glyph of the type ﬁ in M-model of F naturally
generates two Y-chains and they contributes a ! + ¢'*1 = #/(1 +¢) into
P(t) for some [. Hence, the common contribution into P(t) of ¥-chains

starting from vertexes of the type H is Yo UE(M) + (14 t)K(2),
where all coefficients of K are non-negative. Hence, P(t) decomposes
into the sum:

P(t) =" 4+ + Zn: VE(M) + (1 + ) K(t) + R(t),

where R(t) is a contribution of -chains starting from a vertexes of

type Uf . Each such a chain starts from either a vertex from Vs (those
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vertexes, and therefore chains, corresponds to glyphes of types Ijj and

in 9) or from an ends of edges in ¥ which are generate glyphes of

the type ﬁ in 0. Each chains corresponding to ﬂj or Lh contains
two elements of consecutive degree in A\ (By U (Gy)) and, therefore,

contributes t' + ¢+ for some [ into P(t). Each glyph of the type i
in ¢ generates two ¥-chains and those chains contains two elements of
consecutive degree in A\ (ByU (Gy)4) also. Hence, R(t) = (1+t)N(t)
where all coefficients of N are non-negative.

Remaining case M™! is non-orientable and char(E) # 2 is slightly

different. In that case M-model of F' contains exactly one glyph of the

type (containing the global maximum of h). This glyph generate
one Y-chain which contributes ¢" into P(t). Hence, in that case

P(t) = t"™ + "+ Pe(M)(t) + (L + t)K(t) + (1 + )N (1),

in the notation above. O

8.3. Classical Morse estimates in Arnold’s example for N x St
Consider a germ f in Arnold’s example constructed from a manifold
M™! which is a product of closed connected manifold N with S*. More
precisely, let B"*! be an embedded into N x S! ball, F be a strong
Morse function on N x S' and f be a strong Morse germ of F' along
OB™™. We will show that Pg(B™™') — P_(f, B"™) = —(1+t)Q(¢) for
a polynomial () with non-negative coefficients. It implies that classical
Morse inequalities do not guarantee critical points of an extension of f
into B!, B

Consider a function F' which is a restriction of F' on M; = ((N X
SH\ B™1) U S™ and denote its M-model by M(F). Consider the
case of orientable manifold N or char(E) = 2. In that case the global

maximum of f|g» contributes into the unique glyph of the type vﬁ ,
global minimum of f|g» contributes into the unique glyph of the type

o

, all other glyphes of /\/l(ﬁ ) are of types I| , , Llﬂ , and

i only, since F has no critical points and OM; = S™.
The polynomial P_(f, B"*1)— Pg(B™"!) has the following expression

in terms of glyphes contributing into M (F):

R C3 0T (T M IR S S It
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Thus it is sufficient to show that > # % th=1 44" —1 is divisible by
k-1

(1+1) and the result of the division is a polynomial with non-negative
coefficients. Indeed, the last polynomial equals to $(Pg(M)(t) — 1) —
1. Using Kunneth formula Pg(M)(t) = (1 + t)Pe(N)(t) we get:
Y Pe(M)(t) — 1) =1 = t71(1 + t)(Pe(N)(t) — 1). Coefficients of
the polynomial ¢~(Pg(N)(t) — 1) are obviously non-negative.

The case when N is non-orientable and char(E) # 2 is analogous.
The formula for the polynomial P_(f, B"") — Pg(B™*!) differs by the

additional summand ¢"~!, since global maximum is a part of a basis in

a glyph of the type ﬁ which contributes ¢"~! + " in P_(f, B"™).

However > # L g+ tmt — 1 equals 1(Pe(M)(t) —1) — 1+
k—1

t" + "1 and we can apply considerations above.

8.4. Realization of glyphes. . Each glyph appears in an M-model of a
suitable strong Morse function.

Figure 11.Functions on immersed disks and their M-models

9. CORRECTIONS

(1) Reference to Arnold problem
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2) Short intro to Section 3

3) Boundary map or connecting homomorphism?

4) Check the proof of Lemma 3.1.

) Grading —; degree
) Nuzhno li Statement PQRDEF?
) Ispravit’ dokazatel’stwo lemmy 4.* in view of the definition of

weakly equivalence

(8) Dopisat’ v minimal complexes 1. — mozhno nasil'no opredelit’ P
po minimal indecomposable. 2. tuda zhe ili kuda-to esche chto
ekwiwalentnost’ zadannaya P, est’ ”usilenie” ili ”oslablenie”
slaboj i chto klass P-ekvivalentosti soderzhit konechnoe chislo
klassov weak equiv

) proverit’, chto gruppa deistvuet @ — S9S~! a ne 9 — S~19S

) emptyset -; varnothing

) grading -; degree proverit’ vsyudu

)

)

(
(
(
(5
(6
(7

9

0

1

2) F(A)ili E® A - (ne) sdelat’ (li) edinoobrazno.

3) kak postavit’ kvadrat v vyklyuchnoi formule v konec? (Theorem

Morsedecomp for example)

(14) dobavit’ ssylku w d-trivial na primer iz topologii i sootw Lemmu
w dokazatel’stwe

(15) proverit’, podumat’, ne nado li vsyudu zamenit’ F, na M i F?
ioM*

(16) underlevel or sublevel

(17) Predlozhenie pro algebr model’ podvislo

(18) znachok izomorphizma ~ ili approz??? Proverit’ i vsyudu
pomenyat’

(19) The bibliography - chto nuzhno, chto net.

(
(1
(1
(1
(1
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