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Abstract. Dynamics of solitons is considered in an extended nonlinear Schrödinger 
equation, including a pseudo-stimulated-Raman-scattering (pseudo-SRS) term 
(scattering on damping low-frequency waves, nonlinear dispersion and inhomogeneity 
of the spatial second-order dispersion (SOD). It is shown that wave-number downshift 
by the pseudo-SRS may be compensated by upshift provided by spatially increasing 
SOD with taking into account nonlinear dispersion. The equilibrium state is stable for 
negative parameter of nonlinear dispersion and unstable for positive one. The 
analytical solutions are verified by comparison with numerical results  

1. Introduction 
The great interest to the dynamics of solitons is motivated by their ability to travel long distances 
keeping the shape and transferring the energy and information. Soliton solutions are relevant to 
nonlinear models in various areas of physics which deal with the propagation of intensive wave fields 
in dispersive media: optical pulses and beams in fibers and spatial waveguides, electromagnetic waves 
in plasma, surface waves on deep water, etc. [1-7].   
       Dynamics of long high-frequency (HF) wave packets is described by the second-order nonlinear 
dispersive wave theory. The fundamental equation of the theory is the nonlinear Schrödinger equation 
(NLSE) [8,9], which includes the second-order dispersion (SOD) and cubic nonlinearity (self-phase 
modulation). Soliton solutions in this case arise as a result of the balance between the dispersive 
stretch and nonlinear compression of wave packets.  
       To solve many applied problems there is the necessary decreasing of solitons`s space size. Such 
decreasing is accompanied, as usually, by stimulated scattering on low-frequency (LF) media 
perturbations. To this time stimulated scattering on spatially homogeneous LF time modes (stimulated 
Raman scattering (SRS)) was considered in details [1]. SRS is described in extended NLSE by term 
with time delay of nonlinear kerr response. For localized nonlinear wave packets (solitons), the SRS 
gives rise to the downshift of the soliton frequency [10] and eventually to destabilization of the 
solitons. The compensation of the SRS was studied to this time distally [10-21].  
        For a series media the propagation of short solitons is accompanied by arising of damping LF 
waves. These LF modes are internal waves in the stratified fluid and ion-sound waves in the plasma. 



 
 
 
 
 
 

Model for describing of stimulated scattering of HF waves on damping LF waves, named as pseudo-
stimulated-Raman-scattering (pseudo-SRS), was proposed in [22-24]. Taking into account the wave 
factor of stimulated LF perturbations significantly varieties the dynamics of short HF solitons in these 
media. The pseudo-SRS leads to the self-wavenumber downshift, similar to what is well known in the 
temporal domain [1,10-21] and, eventually, to destabilization of the solitons. The model equation 
elaborated in [22-24] also included smooth spatial variation of the SOD, accounted for by a spatially 
decreasing SOD coefficient, which leads to an increase of the soliton's wave-number, making it 
possible to compensate the effect of the pseudo-SRS on the soliton by the spatially inhomogeneous 
SOD. The equilibrium between the pseudo-SRS and decreasing SOD gives rise to stabilization of the 
soliton's wave-number spectrum. However, the consideration was carried out in disregard of the 
nonlinear dispersion. 
      In this work the soliton dynamics is considered in the frame of extended NLSE with a pseudo-
SRS, decreasing dispersion and with taking into account nonlinear dispersion. Shows that equilibrium 
state between the pseudo-SRS and decreasing SOD is stable focus for negative nonlinear dispersion, 
and unstable focus for positive nonlinear dispersion.   

2. The basic equation and integral relations 
The great Let’s consider the dynamics of the HF wave field ( ) ( )κξωξ ititU −exp,  in the frame of 
extension NSE with pseudo-SRS, nonlinear dispersion and inhomogeneous SOD:  
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where ( )ξq  is the SOD, µ  is the pseudo-SRS, β  is the nonlinear dispersion (self-stepping). 

Equation (1) with zero conditions on infinity 0→±∞→ξU  has the following integrals: 
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where ( )φiUU exp≡ , ξφ ∂∂≡ /K  is the local wave-number of wave packet.  

3. Analytical results 
For analysis of the system (2)-(4) we can found from imaginary part of Eq.(1)  
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Let present wave-number in (5) as ( ) ( ) ( ) ( ) ( )tKqtUtK ,~/,2/3, 2 ξξξβξ +−= , where K~  is described by 
equation 
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To found K~  we assume that the scales of the inhomogeneity of the SOD term and additional local 
wave-number K~  are much larger than the size of the wave-packet envelope, hence the spatial 
variation of the K~  may be locally approximated by the linear function of the coordinate, 
( ) ( ) ( ) ( ξξξξξ ξ −∂∂+≈ / )~,~,~ KtKtK . Then we obtain from Eq. (6) under condition ( ) 0/ =∂∂ ξξU  

(which means that the peak of the soliton's amplitude is located at its center):  
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Further, replacing ( tK , )~ ξ  for soliton-like wave packets by ( ) ( )tktK ≡,~ ξ , we have for wave-
number distribution 
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Spatial variation of the wave-number is caused by the nonlinear dispersion β . With taking into 

account (2) and (8), and neglecting terms order , system (2)-(4) is reduced to: 2β
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0 0,  are initial integral moments of wave packet. 

Equilibrium state of Eqs.(9) is  
00** /,0 ZqLnk ′−== µ .                                                                 (10) 

In particular for  
00* / LZq′−≡= µµ                                                                        (11) 

equilibrium state (10) achieved for 10* ≡= nn , coinciding with initial wave-packet parameter. In the 

equilibrium regime, the wave packet U  propagates with the integral moments, , N 0L , 0Z  and 

wave-number K , keeping their initial values, , , N 0L 0Z , ( ) ( ) ( ) 0
2 /0,2/30, qtUtK =−== ξβξ . 

For linearly decreasing SOD, 0const <=′q , after replacements, 0/ ZNky ≡ , NZqt /0′−≡θ , 
system (9) is reduced to 
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where ( )00 / ZqL ′−≡ µλ , ( )NZqM 000 /3βδ ≡ . For 0<δ  the equilibrium state of Eqs.(12) is 

stable focus, 0=δ : center, 0>δ : unstable focus. The trajectories following from Eqs. (12) on plane 
 are shown in Figure 1 for initial conditions ( yn, ) 00 =y , 10 =n  with different δ  and λ . For 1=λ  

trajectories coincide with the initial point ( )1;0 .  
 



 
 
 
 
 
 

 
Figure 1. The trajectories following from (12) on plane ( )ny,  for initial conditions , 

 with different 

00 =y
10 =n λ  [(a): 4/3=λ , (b): 4/5=λ ] and differentδ .  

4. Numerical results 
We simulated solutions of the initial-value problem for the wave packet, 

 (with initial distribution of wave-number ( ) ( )[ ξξβξ sechtanh2/3exp0, itU −== ]
( ) ( ) ( ) ( )22 0,2/3sech2/30, =−≡−== tUtK ξβξβξ ) in the framework of Eq. (1) for 

( ) 10/1 ξξ −=q , and different values of µ , β . The analytically predicted equilibrium value of the 
spatial-SRS coefficient (11) for this initial pulse is 16/1* =µ . In direct simulations, the initial pulse 
for 16/1=µ  and different β  is a stationary localized distribution (figure 2).  

 
Figure 2. The numerically simulation 
evolution of modulus of the wave-packet 
envelope versus t,ξ  for *16/1 µµ ≡=  with 
different values of β . 

 
   At values of the pseudo-SRS coefficient different from *µ , given by Eq. (11), the simulations 
produce nonstationary solitons, see an example for ( ) 64/34/3 * ≡= µµ  in figures 3 and 4.  



 
 
 
 
 
 

 
Figure 3. The numerically simulation evolution of modulus of the wave-packet envelope versus 

t,ξ  for ( ) 64/34/3 * ≡= µµ  with different values of β  [(a): 16/1−=β , (b): 0=β , (c): 
32/1=β ].  

 
In figure 4, numerical results produced, as functions of time, by the simulations for the value of point 
coordinate of the maximum modulus of the wave-packet's shape mξ  ( ( ) ( )tUtU ,,max mξξ = ), are 

compared with the analytical counterparts of the mass-center wave-packet envelope ( ) qnq ′−≡ /10ξ  

obtained from Eqs. (9) for ( ) 64/34/3 * ≡= µµ  and different values of β .  

 
Figure 4. Numerical results (solid curves) for the value 
of point coordinate of the maximum modulus of the 
wave-packet's shape mξ  and analytical results (dashed 

curves) for the mass-center wave-packet envelope ξ  
versus time for ( ) 64/34/3 * ≡= µµ , and different 
values of β . 

 
In figure 5, numerical results produced, as functions of time, by the simulations for the value 

( ) ( ) ( ) ( )( m
2

mmnum 2/,3, ξξβξ qtUtKtk += )  at the point of maximum modulus wave-packet's shape 

mξ , are compared with the analytical counterparts of wave-number ( )tk  (see relation (8)) obtained 

from Eqs. (9) for ( ) 64/34/3 * ≡= µµ  and different values of β . Close agreement between the 



 
 
 
 
 
 

analytical and numerical results is demonstrated by the figure. A similar picture is observed at other 
values of the parameters.   

 
Figure 5. Numerical results (solid curves) for the value 

 at the point of maximum modulus of the wave-
packet's shape 

numk

mξ   and analytical results (dashed 
curves) for the value  versus time obtained from (9) 
for 

k
( ) 64/34/3 * ≡= µµ , and different values of β . 

5. Conclusion  
In this work, we studied the soliton dynamics in the framework of the extended inhomogeneous 
NLSE, includes the pseudo-SRS effect, the lineally decreasing SOD and nonlinear dispersion. The 
results were obtained by means of analytical method, based on evolution equations for the field 
moments, and verified by direct simulations. The stationary solitons exist due to the balance between 
the self-wavenumber downshift, caused by the pseudo-SRS, and the upshift induced by the decreasing 
SOD. The analytical solutions are close to their numerically found counterparts. 
      The present model does not take into regard the third-order linear dispersion. The compensation of 
the pseudo-SRS in the model of inhomogeneous media which includes this higher-order term will be 
considered elsewhere.  
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