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                                  Stochastic Leverage of the Global Financial System 

 

Contemporary world finance according to statistics of the IMF, summarized in Table1, is an 

immensely huge and complex system. The total amount of financial assets in the world has 

achieved an astronomical figure of $270 trillion in 2012, and almost four times oversized total 

real resources measured by the world GDP. The scale of the world finance is by orders of 

magnitude larger than any of its participants including banks and financial corporations with 

trillions of dollars in their assets. These characteristics reflect the functioning of a highly 

sophisticated network of banks, companies, markets and instruments encompassing actions of 

innumerable producers, consumers, investors, creditors and borrowers operated on different 

financial and real markets. 

        Probably the most prominent feature of the world financial system development is its 

continuously growing debt. The world debt, increasing by 5.3 percent annually in 2007-14 

(Bloomberg, February 5, 2015), and outrunning growth of the world GDP, has become one of 

the major economic concerns. By what means is it possible to model the global phenomenon of 

growing debt? What are the major interrelations among leverage and structure of a financial 

system? Whether predictions of this enormous and complex process are reproducible and, thus, 

do they have some scientific value? 

        Debt process, as a basic relation between creditors and borrowers, is the core of financial 

intermediation. The latter, in terms of time, is a natural form of manifold processes of investing 

in a competitive environment, both on financial and real markets. Different financial rates, or 
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their expected values, are used to describe investing and aggregate saving. In terms of space, 

financial intermediation is represented generally by leverage
2
.  The latter, as a special measure of 

financial process, has attracted a lot of attention recently. Modeling of debt and financial 

leverage has become a noticeable feature of modern academic research (Adrian, Shin, 2008; 

Gromb, Vayanos, 2008; Geanakoplos, 2010; Holmstrom, 2015; Thurner et al, 2011).  These 

works stressed the importance of the causal relationships and feedbacks, as well as the necessity 

of a general approach towards understanding leverage dynamics and the structure of a financial 

system.           

Table 1.  Global Financial System in 2003-12 (US dollars, trillion) 

Years 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Total Assets, tA  128.3 144.7 151.8 190.4 229.7 214.4 232.2 250.1 255.9 268.6 

Index,  yoy 1.0 1.17 1.05 1.25 1.21 0.93 1.08 1.08 1.02 1.05 

Stocks, te  31.2 37.2 37.2 50.8 65.1 33.5 47.2 55.1 47.1 52.5 

Index,  yoy 1.0 1.19 1.00 1.37 1.28 0.51 1.41 1.17 0.85 1.11 

Debts, 1

tx  52.0 57.9 58.9 68.7 79.8 83.5 92.1 94.8 98.4 99.1 

Index,  yoy 1.0 1.11 1.02 1.17 1.15 1.05 1.10 1.03 1.04 1.01 

Bank assets, 2

tx  40.6 49.6 55.7 70.9 84.8 97.4 93.0 100.1 110.4 117.0 

Index,  yoy 1.0 1.22 1.12 1.27 1.20 1.14 0.95 1.07 1.10 1.06 

World GDP, tY  36.2 40.9 44.5 48.2 54.5 60.9 57.8 62.9 69.9 72.2 

Index, yoy 1.0 1.13 1.09 1.09 1.13 1.12 0.95 1.09 1.11 1.03 

{Source: IMF, Global Financial Stability Reports, 2003-2014} 

           The origins of a feedback analysis in economics might be traced back to the logistic 

equation introduced by P-F. Verhulst in  the  first half of nineteenth century. Since then the 

logistic model, both continuous and discrete, in its innumerable versions, has been a “workhorse” 

in biology and other sciences. Yet, paradoxically, the continuous logistic model, with very rare 
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exceptions (Aoki, 1998), attracted virtually no attention of economists
3
. Such a  negligence was 

in no way valid, nor justified. Once the continuous stochastic logistic model is defined properly, 

it is able to encompass parsimoniously important issues of leverage dynamics in the short and 

long run   (Smirnov, 2012, 2013, 2014).   

         This report was focused on the stochastic logistic model as a unified means to study 

financial leverage dynamics. Causal relationships and non-linear feedbacks in finance were 

explained under simpler (zero variance) deterministic assumptions. Basic financial balances of 

levels and flows were recombined into a logistic model reproducing the market behavior in 

rational and irrational regimes. The long term random leverage behavior was explained via its 

asymptotic (stationary) gamma distribution and its characteristics. The model specified various 

rates of return, their spreads, stationary and anchor leverage, collateral ratios and the natural rate 

of interest. The case of convergence to the anchor leverage was studied due to its economic 

importance, especially for effective management and control. 

       An analysis of the world financial system, as a whole, however disputable, was considered 

as a feasible alternative between Scylla of distortions due to international financial markets and 

Charybdis of regional discrepancies among financial subsystems
4
. In the author’s opinion, 

regional discrepancies were lesser evils and were, at least partially, smoothed by appealing to the 

world averages.  

Basic macrofinancial equations 

The starting point of the modeling of a logistic macrofinancial system was formed by the scalar 

financial balance:  

(1) ( ) ( ) ( )A t x t e t   

that included variables of assets, ( )A t , debt, ( )x t , and capital, ( )e t . Equation (1) has a standard 

meaning of a balance between value of aggregate assets and total liabilities, including aggregate 

debt and equity. Evidently, actual debt has some maturity,T , which is an important characteristic 

of the market solvability and riskiness. Thus, equation (1) was made consistent by assuming an 

existence of asymptotic relation: 
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4
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 lim ( , ) ( )T t x t T x t   ,  

and the appropriate equality for assets. Aggregate financial flows, being subject to the equality 

between saving and investment, were represented by the following equation: 

     ( ) ( ) ( )dA t dx t de t   

where d is the operator of taking a differential. In terms of future value, being parameterized by 

instantaneous rates of return
5
 on assets,  , on aggregate debt in money form, r , and  on equity,

 , the balance for financial flows takes a simple form: 

(2) A rx e   . 

  The system (1-2) get a scalar representation by introducing a macrofinancial leverage, 

( ) ( ) / ( )l t A t e t , as a ratio of assets to equities.  A linear equation with regard to leverage could 

be easily arranged: 

(3) ( ) ; 1r r l l      . 

        Historically, probably, only the assets of Dutch Wisselbank (1603) could have been formed 

along the borderline case, 1l   (Ferguson, 2009). Modern financial system contains huge 

amount of debt, 0x  , and the macrofinancial leverage  in 2003-12 was never smaller than 3.9.   

       Equation (3) is widely used to boost ROE  for a given positive spread ( )r  .  Accordingly, 

negative spreads that are imminent in periods of critical market turbulence multiply losses of the 

market participants
6
.  Multiplying both sides of (3) by 1l  and rearranging terms, parameter   

might be represented as 

1(3') ( )r l      , 

which is an arithmetic average of parameters  and r , taken with weights 1l   and 1(1 )l , 

respectively. Hence parameter   has a meaning of a weighted average cost of capital, WACC .      

To avoid economic inconsistencies among level and flow variables macrofinancial rates of return 

are to satisfy either one of the following inequalities: 

(4) r     or     r   .  

      Causality of a logistic model 
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6
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For a huge global financial system, operating with virtually millions manifold assets possessing 

different characteristics, assumptions of continuity and differentiability of a leverage seem to be 

quite plausible. In accordance with 

 lim ( , ) ( )T t A t T A t  ,  

the existence of an instantaneous leverage, ( )l t , can be verified thus leading to a simple relation 

between leverage and its changes:       

 ( ) [ ] ( )d l t l t dt   . 

     This differential equation, together with equation (3), forms the leverage logistic model:  

0(5) ( ) [ ( )] ( ) ; (0)dl t a bl t l t dt l l    

where ( )a r   is one parameter of the model. The leverage dynamics is governed by the 

quadratic feedback with the intensity dependent upon the magnitude and sign of parameter b . 

The feedback parameter 2( ) / ( )b r r    , in order to translate the stationary point to the 

right from 1l  , is smaller than the first spread, b a . Their ratio: 

 *(6)
a r

l K
b r






  


 

defines a stationary point of  equation (5) which is a focus of our interest 
7
. Since leverage, by 

economic sense, is a positive number, spreads { , }a c  are either positive or negative, 

simultaneously.         

     For positive spreads, leverage, according to (5), changes non-linearly with drift 0a   and 

negative feedback parameter 0b  . This process reflects difficulties on the normal market for 

borrowers with large debts in obtaining additional credit. These effects stabilize the debt market 

forcing leverage to converge to its stationary state (6). If spreads are negative, leverage would 

change due to positive feedbacks emerging in an irrational market. “Irrational exuberance” is a 

symptom of the leverage instability. Empirical leverage behavior for years 2007-08 is illustrated   

in Table 2 composed on the IMF data (GFSR, 2008, 2009).  
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Table 2. Credit Crunch 2007- 08 Parameters 

 

 

 

  

 

  

 

r  

 

a r   

 

c r   

2( )r
b

r









 

 

K  

2007  0.2805  0.2064  0.1791  0.0273  0.1024  0.00728  3.75  

2008  0.4854  0.0666  0.0990  0.1656  0.5844  0.04691  3.53  

 

    This data was used for constructing a phase diagram (Figure 1) for the equation (5).  

 

Figure 1.  The  phase portrait of the global financial system for 2008-09. 

       It shows that the global leverage reacted to the “overshooting” market effect before the 

credit crunch and went to   instability (crisis) for the year 2008. Thus, the short run leverage 

dynamics   near a stationary point demonstrated the quality of a systemic metastability.  

The short run leverage dynamics 

In general, the short run dynamics is going on in the vicinity of a stationary leverage. For small 

changes in leverage, rates and their spreads could be considered constant. By economic meaning, 

spread ( )a r   is an indicator of credit supply while the spread ( )c r   is an indicator of 

demand for credit. At a stable stationary leverage *l  for positive spreads indicators of demand 

for assets (LHS) and the constant supply of credits (RHS) are equal
8
: 

* 1(7) ( ) ( )r l r    / 
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         Thus, for any *

1l l , an investor’s position is represented by inequality: 1( ) ( )r l r    , 

and demand for credit exceeds its supply. Investors would borrow additional funds and their 

actions increase leverage until it reaches the stationary point. On the other hand, at any *

2l l the 

demand for loans is less than their supply. Investors, by selling their assets, would drive leverage 

down to the stationary state. Financial markets with positive spreads behave in accordance with 

the analysis of the Swedish economist K. Wicksell (1898) for a market of credits. Wicksellian 

differentials, analogous to the spreads in our model, were thoroughly investigated by T. Aubrey 

(2013). 

       On the market with negative spread, 0a  , stationary leverage is instable and economic 

logic becomes a bit more complicated since the Jacobian is positive: / 0f l a     . For any

*

1l l , we have an inequality: 1( ) / ( )r l r      . In terms of losses and economy, which are 

the positive amounts, the same position should be expressed (after the multiplication by -1) as 

the opposite inequality: 1( ) / ( )r l r    . Hence if losses exceed economy, a typical investor 

has to decrease his/her debt exposition by lowering leverage. Such actions would explain 

investors’ behavior along the trajectory of the Fisher debt deflation process (the Fisher branch).  

       Similarly, for any *

2l l  negative returns on investors’ position is larger than their negative 

costs: 2( ) / ( )r l r      , meaning that the economy on their costs would exceed their 

losses. Thus investors are stimulated to borrow and increase their leverage but such actions on 

the abnormal market (with negative spreads) would blow up a financial bubble. The appropriate 

mechanism of irrational behavior was described by H. Minsky (1986). Situations, described 

above, are represented on Figure 2 based upon empirical data of Table 2. 
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Figure 2.  Attractor and repeller for the global finance in 2007-08. 

 

         As known, logistic equation (5), though nonlinear, has an analytic solution
9
. The family of 

logistic trajectories is represented graphically on Figure 3. Each trajectory ( )l t  is specified by its 

initial state, 0l , and spread, a , according to 

*
* 1

0

(8) ( ) {1 ( 1)exp[ ( ) ]}
l

l t l r t
l

      . 

       Solution (8) was written as a weighted harmonic average of the initial leverage, 0l , and its 

stationary state, *l . Note that the bubble (or the Minsky) branch exists for negative parameters 

and  *

0l l , the debt-deflation (or the Fisher) branch exists for negative parameters and *

0l l , 

while stable trajectories exist for positive parameters { , }a b . 

    All in all, as shown in Figure 3, the logistic model helps to classify different market regimes 

consistently.  For the normal (Wicksellian) market spreads are positive and the stationary 

leverage is stable. Hence investors would borrow additional funds (thus increasing their 

leverage) if the demand for credit exceeded its supply, and vice versa. Stationary leverage is 

instable on the abnormal market
10

 where growing prices lead to increasing demand for assets 

(along the Minsky bubble) or to the Fisherian debt deflation trajectory (Fisher, 1933).  Spreads 
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are negative on the irrational market. Thus, contrary to the “Levins paradox”
11

 the financial 

leverage model did allow for the existence of negative parameters (spreads) that would give rise 

to bubbles and ultimate market collapse. These situations are abnormal, short lived, and highly 

undesirable but, nonetheless, they could have arose aperiodically on financial markets.   

                                    . 

Figure 3. Logistic trajectories of leverage.       

Stochastic leverage and its long run dynamics  

Under uncertainty market participants are unable, for a however short period of forecasting, to 

predict future leverage without some error. A continuous random process of leverage, ( )L t , 

follows the stochastic differential equation, SDE: 

(9) ( ) ( ){[ ( )] ( )}dL t L t a bL t dt dW t   , 

where    is the leverage volatility, and 
0

( )

t

uW t dW   is the standard Brownian motion
12

. 

Loosely speaking, SDE (9)  says that change in the leverage, ( )dL t , is composed of a non-linear, 

non-random  drift, 2[ ( ) ( )]aL t bL t dt , and a diffusion, ( ) ( )L t dW t , influenced by a differential, 

( )dW t , of Brownian  motion.  
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logistic models in biology (Gabriel et al, 2003). 
12

 Since Brownian motion has no derivative equation (9), in fact, is a symbolic representation of the integral 

equation: 

0 0

( ) (0) ( )[ ( )] ( ) ( )

t t

L t L L u a bL u du L u dW u     . 
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         Stochastic processes, defined by SDE (9), have an asymptotic (or stationary) distribution. 

Contrary to a single instrument, the global financial system exists, by definition, “almost 

forever”. Hence, the study of a stationary distribution of aggregate leverage reveals important 

features of its long run behavior. Stationary probability density function, ( )p l , of a random 

leverage, ( )L t , could be found by solving the forward Kolmogorov equation (FKE):  

2
2 2

2

1
(10) [ ( ) ( )] [ ( )] 0

2
l a bl p l l p l

l l


 
   
  . 

        Contrary to the general FKE, equation (10) is an ordinary differential equation
13

, and has 

two solutions (Pascuali, 2001). The trivial solution, ( ) ( )p l l ,   is a Dirac  distribution 

associated with the stationary state, *

1 0l  . A non-trivial solution to equation (10) happens to be 

the pdf of a gamma-distributed leverage: 

 1 1(11) ( ) [ ( )] lp l l e        

where  ,   are parameters of a distribution, and (.) is  gamma function.  Gamma distribution 

is defined for positive parameters of shape, , and rate,   (or scale 1/  ),  respectively:  

2 2

2 2
1;

a b
 

 
   . Hence gamma distribution exists on an interval: 20 2a  , in several 

modifications.  Contrary to the normal distribution, the most probable asymptotic characteristic 

of gamma distributed random leverage is its mode:  

 
21

(12) [ ] ; 1Mode L K
b

 





     

which is smaller than its expectation: 

 
2

0

(13) ( )
2

L l p l dl K
b

 





    . 

        The mode exists for “peaked” modifications of gamma distribution, and is invariably zero, 

if 2 a   . It implies that the mode is an attractor of a convergent random logistic leverage.  

       In the following the leverage convergence will be analyzed only for positive spreads, 0a  . 

This simplification is not too restrictive since financial crises, defined by negative spreads, are 
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 Physicists usually call forward Kolmogorov equation (FKE) a Fokker-Planck equation. 
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short-lived economic phenomena. As a consequence, the “babble” trajectory in Figure 5 exists 

only in the short run. 

The Lyapunov exponent and the leverage convergence 

For a gamma distributed leverage its Lyapunov exponent: 

1

0

( 2 ) exp[ ]
( )

a bl l l dl



 





  
   

 can be easily reduced to a simple difference: 

2
2(14) 2 2 2 ( )

a
a bL a b L a b a

b


 


        .  

       In plain words, if expected variance of leverage is less than its spread, 0a  , then a 

stochastic leverage would converge to its mode in the long run (Dennis et al, 2003). The 

Lyapunov exponent of a logistic leverage model serves as a measure of investors’ confidence in 

the long term market solvency, the latter being associated with the ultimate debt redemption.   

Investors are confident in the market solvability if the Lyapunov exponent is negative. But, the 

latter becomes positive if “the  market stay irrational longer than you remain solvent”.  

Anchor leverage and the natural rate of interest 

Financial stabilization in the model is a process contingent on the leverage convergence to the 

mode of its stationary gamma distribution. How could this mathematical result be explained from 

the economic point of view? 

       Consider a macrofinancial system for r   that represented by some configuration 

*{ , , ; }r l   with empirically given constant rates of return and leverage, l . In the short run, both 

spreads { , }a c  are constant, and the leverage can take small changes near its stationary state. 

Thus, one of the equations, (3) or (3’), is redundant. Evidently, it is not plausible in the long run 

for creditors and borrowers being motivated by only one of the two spreads. Creditors behavior, 

in aggregate, is influenced by spread, ( )a r  ,  and would define the rate of return on equity, 

ROE  . The latter, similar to microlevel, could increase via accumulation of aggregate debt, 

hence, the leverage increase. Large changes in leverage in combination with constant spread a   

could change the return on equity, ( )l , substantially:  

 (15) ( ) ( ) ; (1)l r r l       . 
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         On the other hand, the same initial configuration, *{ , , ; }r l  , defines the collective 

behavior of borrowers, the latter being subject to another constant spread, ( )c r  . In 

aggregate,   borrowers would influence the rate of return on assets, ROA  : 

  1 1(16) ( ) ( ) ; (1)l r r l        . 

         From the long run perspective, every actual market configuration *{ , , ; }r l   could be seen 

as containing in itself a germ of a continuum of consistent returns on assets and equities that 

would evolved in a process of mutual adjustments of creditors and borrowers. Evidently, 

equations (15, 16) have a common positive root, Nl , that could be found by solving an equality: 

  1(17) ( ) ( )N Nl l      .    

          In words, returns on equity, ROE , and on asset, ROA , are equal at the anchor leverage: 

  

0.50.5

0.5(18) N

a r
l K

b r





  
     

   
. 

      Their common value,  , could be called the natural rate of interest from the following 

reasons. In the region of overindebtedness inequality ROA   is taken place. If return on assets 

is associated with the current interest rate, then this inequality would correspond to the credit 

expansion triggering inflation, ultimately. The opposite inequality, ROA  , takes place for 

overcapitalized systems and would define excess saving triggering deflation. The above said has 

clear allusions to the Wicksellian analysis of money expansion, inflation and deflation. 

Convergence to the anchor leverage   

Convergence towards anchor leverage is tantamount to the financial system stabilization in the 

long run. In its turn, anchor leverage is an attractor for a stochastic logistic dynamics subject to 

constraints upon its variance. If a random logistic process converges towards anchor leverage: 

(19) [ ] NMode L l , 

then the critical variance should be equal to  

2(20) c a ab   . 

       At the critical variance, 2 2

t c  , financial market deteriorates with gamma distribution 

being reduced to the exponential one. Some results of numerical simulation of this particular 

case of a long run convergence are presented in Table 3. 
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    Table 3.  Results of simulation on actual data. 

a  b  /K a b

 
NK l

 

2

c      1/ 

 
  L  Mode

 

  

0.034

 

0.0063

 

5.4  2.34  0.019

 

2.58

 

0.663

 

1.51

 

0.015

 

3.89

 

2.34  0.0691

 

 

         Empirical value of the anchor leverage N Hl K  appeared to be quite close to 2.0 that 

means the highest  backup of a debt by the total capital. As seen from Table 4, the anchor 

leverage is associated with elementary probability of 20 percent per annum which is the most 

robust global financial market configuration under this scenario.  

 

Table  4. Probabilities of different market configurations  

 
1l  2l  3l  Nl Mode  L  K  

Leverage  1.0  1.5  2.0  2.34  3.89  5.4  

Probability 0.13  0.17  0.197  0.2  0.16  0.01  

 

         Major results of the model simulation were represented in Figure 4. In particular, given 

empirical values of the global market parameters, it defined the most probable state of a global 

leverage, its expected value and the deterministic attractor.  

 

 

Figure 4.  Anchor leverage as an attractor of a gamma distributed model. 
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Collateral ratio for global finance 

The data of Table 1 was used for estimating empirical quantities like financial leverage, tl , 

coefficient tq , and collateral ratios, Yl . These quantities were reproduced in Table 5.  

Table 5. The Global Collateral Ratio components 

Годы 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Yl  3.42  3.54  3.42  3.95  4.21  3.52  4.02  3.98  3.66  3.72  

tl  3.97  3.89  4.08  3.74  3.53  6.4  4.92  4.54  5.43  5.12  

tq  0.87  0.91  0.84  1.05  1.19  0.55  0.82  0.88  0.67  0.73  

*Y t tl l q  3.45  3.54  3.42  3.93  4.2  3.52  4.03  3.99  3.64  3.74  

   

      Aggregate collateral ratio is a simple measure of correspondence between values of total 

financial assets and real resources, the latter approximated by the world GDP.  When empirical 

ratio is less than its critical value, an economic development, seems to be robust. On the other 

hand, for an empirical ratio being larger than its critical value, many financial assets become 

toxic triggering sequence of events finally culminated in a financial crisis. In Table 5 

macrofinancial collateral ratio was defined by the following simple expression:  

 (21) *Y t tl l q , 

where t t tq e Y  is the ratio of total equities to the world GDP.  The model of the q dynamics on 

the microlevel was described in detail by J. Tobin (1996) who suggested an explanation of the 

equities market fluctuations. Firms financing their activities on equities markets, would expand 

their investments, if 1tq  . On the other hand, growing cost of investment would drive this 

coefficient down. If the decrease is significant, and 1tq  , the opposite forces would dominate 

and drive up this coefficient. Stochastic fluctuations on the equities market seems to be 

supported by the data assembled in Table 5. 

        In a formal language it means that coefficient ( )Q t would follow the Ornstein-Ulenbeck 

process with SDE:  

(22)   ( ) [1.0 ( )] ( )dQ t Q t dt DdW t    
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where  is the mean reverting parameter, D is the diffusion parameter, and 1.0 is the long run 

attractor. Solution to (22) is the following:  

0
0

( ) 1 ( 1)exp[ ] exp[ ( )
t

Q t Q t D u t du         

which evidently has 1.0 as its long term expectation.  

(23) lim ( ) 1.0t Q t   

        The long term expectation (23) has a profound effect upon the global collateral ratio (21). 

Together with the global leverage the latter would converge to the anchor leverage:  

* 0.5(24) lim ( )t Yl t l K   . 

      The collateral ratio of the global financial system converged had an empirical attractor, or the 

anchor leverage, 0.5 2.32K  . The model suggests that a financial leverage, precisely, 

determined the basic configuration of the world economic development.   

          The same reasoning was used to estimate the amount of the world “toxic” assets, Yl , for 

the year 2012. The leverage expectation, 4.67L  , being multiplied by the coefficient, 

2012 0.73q  , gave the “idealized” collateral ratio, 3.41Yl  .  The latter, in fact, corresponded to 

the actual world GDP in $72.2 tn. It means that in the year 2012, the world assets were fully 

collateralized in amount of $246.2A tn .  In other words, the world financial system contained 

about $12.4 tn (or approximately 5 per cent) of toxic assets.  

Some conclusions  

 

A sample about the world financial system, assembled in Table 1, was small but had a well 

defined structure that helped to construct the stochastic logistic model. The latter, being 

established upon mild assumptions about causation, feedbacks and structure of macrofinancial 

processes, was able to encompass parsimoniously the morphology (Goldsmith, 1969) of a world 

financial system. It produced, via logistic SDE for leverage and FKE for its density probability 

function, a subordinated sequence of characteristics including deterministic and stochastic 

leverage attractors, expected leverage, global collateral ratios and the natural rate of return. By 

assigning asymptotic characteristics to a large and complex world financial system, the model 

provided invariants useful for efficient implementation of a consistent policy of financial 

stabilization.  
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       The model explained persistent accumulation of the world debt and discovered no presence 

of so called “debt cycles”. Quite possibly, the small size of a sample data has to be blamed for 

this “disappointing” result. Yet, a prominent deviance from the anchor leverage was in 

agreement with annual empirical variance ( 2 0.081  ) and the spread, ( ) 0.034Ha r   . 

Hence the global drift to ever larger aggregate debt has to be taken seriously, unless forcible 

factors of the leverage convergence will be found and identified.  
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