
Identification of JPEG files fragments on digital

media using binary patterns based on Huffman code

table

Alexander Sorokin

HSE MIEM

National Research University Higher School of Economics

Moscow, Russia

asorokin@hse.ru

Ekaterina Makushenko

HSE MIEM

National Research University Higher School of Economics

Moscow, Russia

Abstract— File fragmentation proves to be a major challenge

for the majority of file carving techniques. Following the works

of Simson Garfinkel, Nasir Memon and other authors we seek to

find a technique to identify digital fragments (clusters or sectors)

of JPEG-files on the digital storage medium or at least sort all the

fragments of the storage based on their probability of being the

part of JPEG-file from the most probable to the least probable.

This paper offers the technique of identifying clusters of JPEG-

files on the storage medium based on binary patterns and the

experimental results of an attempt to build a similar technique

for sector identifying.

Keywords—file recovery; fragmentation; JPEG; Huffman code

table

I. INTRODUCTION

Basic carving techniques as described in [1] are strongly
based on the assumption that the files are allocated
contiguously. They rely on special sequences of bytes
identifying the beginning of the file and in some cases the end
of the file as well. The very basic file carving method is just to
merge all storage space between such byte sequences and
consider it as a recovered file. The main problem with that is
the phenomenon called fragmentation which is also described
in [1]. If a file that is to be recovered is fragmented the
aforementioned technique will return an incorrect result as the
storage space between actual file fragments will be included
into the recovered file as well. Such a challenge led to the
researches focused on finding a solution that would allow
carving of fragmented files with sufficient completeness and
accuracy. Several researches such as described in [2] – [4]
were made and some, specifically [4] were considering the
recovery of fragmented JPEG files. Two reasons may be
named for such a focusing. The first one is that JPEG file
format is among the most popular file formats and the second
one is that it is also an encoded file format with quite a

complex encoding algorithm thus challenging for separate parts
processing. That is why special methods considering only that
file format are still demanded and those described in this paper
may be placed among them.

One of such methods is to find the point where
fragmentation starts as describes in [3]. After that the search
for the next file fragment is done. We consider it to be useful
for that and other possible techniques that require complete
testing of data storage medium memory to first identify the
fragments of the memory that belong to the file type that
matches the type of a file being recovered. Because of
aforementioned reasons we made the research for JPEG file
format.

II. IDENTIFIYNG CLUSTERS OF JPEG FILES

Following the ideas of [4] we have decided to build binary
patterns based on Huffman code tables. In our case such
patterns are to be used for identification of clusters belonging
to JPEG files with standard Huffman code tables specified in
[5].

A. Cluster-level fragmentation

As described in [1] and [4] files are allocated by the file
systems by the minimal chunks of data called clusters.
Hereinafter we will consider the size of cluster as 4KB.

During the allocation process a file system can face one the
following circumstances that would result in file
fragmentation.

First is the lack of free space on the storage medium for
contiguous allocation of file. If there are only separate groups
of free clusters the next file allocated will obviously be
fragmented and the allocation algorithm may vary between file
systems. For example the allocation can start from the largest

Fig.1. Fragmentation. File A is allocated into two fragments and needs

special carving techniques dealing with fragmentation. File B is
contiguous and can be carved by simply finding start and end of file

markers.

consecutive group of clusters or from the cluster with the
smallest number starting from the beginning of the medium.
The first scenario would result in the least possible number of
fragments but may also allocate the last fragment of the file
into the clusters with the smaller numbers than its first
fragment. The second scenario is free from such a risk but may
result in a large number of small fragments. The main popular
file systems however seems to use combinations of these two
scenarios avoiding allocating file so that its earlier parts have
the larger cluster numbers then its later parts. Still Pal and
Memon states in [1] that most file systems would allocate the
beginning of the file in the largest consecutive group of
clusters.

Second is the edition of previously saved files which is
quite obvious. When a file is saved before another file is
allocated and then is once again opened for writing it may
require additional storage space as its size has increased. At the
same time the next consecutive cluster after its last cluster may
be already occupied by another allocated file. In this case
additional file data can be allocated somewhere else on the
medium resulting in file fragmentation. Pal and Memon in [1]
give examples of special techniques used by different file
systems for reducing fragmentation under such circumstances
but conclude that such techniques can not eliminate
fragmentation completely.

Additionally they mention that some file systems may force
fragmentation due to some optimizations or other reasons.

It can be also noticed that Garfinkel in [2] has shown that
the fragmentation of user files which are the main aim of
recovery procedure in most cases is high. The general idea of
fragmentation and its affection on file carving is shown on
Fig.1.

B. Selecting the Huffman codes for patterns

In order to build binary patterns for JPEG clusters
identification we have formed an array of 100 JPEG files made
with to 10 cameras and studied the Huffman codes distribution
on this array of files. Of four Huffman code tables specified in
JPEG file format [5] we have chosen the luminance AC
coefficients table. Our criteria for the choice were the
following. First we planned to have at least one long code in
our pattern in order to lower the false positive error rate.
Amongst Huffman code tables only aforementioned table had
the minimal percentage of longest codes in a single file more
than zero, as shown in Table 1. That means that for every other
table there were files in our array where the longest codes were
not present at all. Second, that minimal amount for luminance
AC coefficients table was still not less than the amount of
clusters in our biggest file that made it possible that each and
every cluster really contains at least one of such codes.

C. Building the binary patterns

Denote by s any binary string that can be viewed as a
pattern for possible search in a cluster under examination.
Denote four Huffman code tables defined in [5] as Hi,j where i
is the index corresponding with the component type with “0”

for Y luminance components and “1” for Cb or Cr components
and j is the index corresponding with the coefficients of said

coefficients – “0” for DC coefficients and “1” for AC
coefficients. For example the luminance AC coefficients table
will be denoted as H0,1. Denote a Huffman code from Huffman

code table Hi,j as jiHh , , denote by d(h) uncompressed bits

following Huffman code h and concatenation operation by “▪”
symbol. If the length of the code h is important denote by h

k

the Huffman code of length k For our method we have used
patterns described by the following formula given in our earlier
paper [6]:

2

it hs  •)(2

ihd •
16

jh •)(16

jhd •
2

kh (1),

where st is the t-th pattern, hi, hj and hk – independently chosen
Huffman codes (hence different subscript indexes) of all

Huffman codes of respective length, 1,0,, Hhhh kji  . We

concatenate one of 2 Huffman codes of length 2 from
luminance AC coefficients code table taken together with its
uncompressed bits with one of 125 Huffman codes of length 16
from the same code table taken together with its uncompressed
bits as well. Then we concatenate the resulting string with one
more separately chosen Huffman code of length 2 from the
same code table. The total amount of patterns is 500 that is 2
variants for codes of length 2 squared as we use such codes
twice multiplied by 125 which is the amount of codes of length
16.

D. Setting the criteria

In order to identify clusters belonging to JPEG files we
offer to search the whole set of patterns in every cluster of data
storage medium. And here we need to specify the criteria for
accepting the cluster as the one we need or reject it. First, as we
made our patterns of Huffman codes from JPEG files, we
expect that at least some of these patterns to be present so the
first criterion would be

0
500

1
 i ip (2),

where pi is the number of occurrences for the pattern number i
(i runs from 1 to 500 through the whole set of patterns).

This criterion being used alone is too weak in rejecting the
clusters which are not parts of JPEG files, so we have added
the upper border as well:

20

500

1
 i ip (3),

or combining these two borders together

200
500

1
 i ip

 (4).

This means that we search all the patterns in every cluster

and calculate the sum of occurrences of all patterns. In case

that sum is both positive and less than 20 we accept the cluster

as the part of JPEG file with default Huffman code tables.

E. Error rates

Using the aforementioned patterns the way we have

described above gives us the following quality of

identification with the null hypothesis of “the cluster is a part

of a JPEG file”. Type II error (i.e. the probability of a cluster

being mistakenly rejected) is about 0.03. This rate was

experimentally achieved twice on two separate sets of JPEG

files, as described in earlier papers [6] and [7].

In [7] type I error (i.e. the probability of a cluster being

mistakenly accepted) was also experimentally tested for

different file types. We had several file types for that we had

said rate very low (less than 0.05) – these were RTF, XML,

CPP, for several others we had that rate less than 0.3 – these

were TXT, HTML, MPEG. We only name here user files

which are usually of most interest during recovery.

F. Possible applications

We can see two main possible applications for cluster

identification.

The firs one is pre-recovery identification of clusters in

order to accelerate the work of any algorithm requiring

complete testing. For that purpose all the clusters on digital

storage medium is tested with the aforementioned technique

and are divided into two parts according to the criteria – those

that were accepted and those that were rejected. Starting each

testing with the cluster from the “accepted” group would

allow the search to be completed within that group in most

cases. The rate of acceleration would depend on what file

types were present at the media along with the file under

recovery. In case of JPEG file recovery one can expect that

almost all the clusters of RTF, CPP, XML files and the

majority of clusters of MPEG, HTML, TXT and some other

files would be excluded from the search.

The second possible application is the post-carving

processing of incorrect carving results. In case a file was

allocated in several fragments keeping the proper order of its

clusters and after that it was carved from its beginning to its

several fragments of other files. We have made a software

prototype that would allow the user to exclude separate

clusters or the sequences of clusters and then see how the file

would look like if processed without them. Part of its file

processing window with user interface is shown on Fig. 2. The

program can apply our identification technique and return the

list of clusters that were rejected. The user can manually try

excluding them or add more clusters in order to find the best

representation of an image being recovered.

III. IDENTIFIYNG SECTORS OF JPEG FILES EXPERIMENTS

Cluster-level approach means the assumption that each and

every cluster is physically contiguous and the fragmentation

can only appear during file allocation by file system.

Meanwhile that is not guaranteed in every case.

First, Pal and Memon in [1] mentioned wear-leveling

algorithm as the possible reason for the fragmentation to occur

on the lower lever making some clusters not physically

contiguous. Wear-leveling means that the firmware which is

being supplied with the digital storage medium enforces the

equal use of all physical memory units on the medium. As

some of them are used more than others this algorithm may

remap logical addresses making logically sequential memory

units physically lacking such a quality. If a disk image of such

a medium with damaged controller is made then its memory

units would be read from the smallest to the largest estimated

logical addresses without actual possibility to check their

logical addresses.

Second, the very similar situation may occur in case one or

several physical memory units are considered by the storage

medium controller as bad sectors. The controller may act

similar to wear-leveling algorithm making it hard or

impossible to verify physical data sector’s logical address in

case the controller is damaged.

Taking these possibilities into account we have made

several attempts to scale our technique for cluster-based

identification for sector-level. Hereinafter we will consider the

size of sector as 512 Bytes.

A. Using the set of patterns built for cluster identification

Our first attempt was to use our pattern set for cluster

identification in sector identification without any modification

built according to (1). Since a cluster is 4 KB and a sector is

only 512 Bytes a sector is 8 times smaller than a cluster is.

That means that in order our criteria to work properly (and

most precisely its lower border) every cluster successfully

identified must have at least 8 occurrences of our patterns.

This is so as each cluster is now processed as 8 separate parts

and each and every such part needs to include at least 1

occurrence to be accepted. We have made an estimation of II

type error rate by finding the following value. In case a cluster

contains 8 occurrences or more it is added to the sum as 8 (as

all 8 of its sector can potentially be accepted) and if it contains

TABLE 1. Huffman codes distribution in JPEG files

Fig.2. Part of file processing window in post-carving processing software.

Clusters list on the left is made by program and can be edited by the user.
Separate clusters can be selected and the image on the right shows the

view of the original file processed without selected clusters.

less occurrences it is added to the sum with its number of

occurrences (as no more sectors of that value can be

accepted). The final sum was then divided by the number of

clusters multiplied by 8. Our result was about 0.71 that means

that type II error rate is expected to be no less than 0.29 which

is far worse than on the cluster level but still can be used for

some applications given that type I error rate remains low. Our

experimental result for such case was only 0.51 which is even

less and thus had to be increased. Considering type 1 error rate

the following can be said. First the rate of sectors rejected by

the lower-border criterion was no worse than for cluster level

identification since we searched the very same set of patterns

in only the fractures of binary strings that were examined on

cluster level. Second the rate of sectors rejected by the upper-

border criterion could be lowered for the same reasons as with

the first criterion. Thus we had to make the second criterion

stronger so we consecutively moved the upper border from 20

to 19, 18 and so on up to 5 where the rate of sectors

successfully accepted became less than 0.5. The last value was

clearly unsatisfactory but since the rate decreased really

slowly we considered it possible to actually lower the upper

border significantly.

B. Using the modified set of patterns and modified criteria

In order to increase the rate of successfully accepted

clusters we had to modify our patterns somehow. One of

possible modifications was “pruning” them by removing the

last Huffman code of length 2 and the uncompressed bits after

the code of length 16 so that new patterns looked like this:
2

it hs  •)(2

ihd •
16

jh (5)

Because of lack of one code of length 2 for what there

were 2 possible values in AC luminance coefficients code

table there were only 250 codes instead of 500.

With the patterns built according to (5) and the criteria (4)

we have achieved the rate of correct identification of sectors

belonging to JPEG files of about 0.73 that makes the type II

error rate of about 0.27 which is even slightly better than our

theoretically estimated level of 0.29 that was claimed

acceptable.

In order to make our criteria even stronger in rejecting the

sectors of other file types we have decreased its upper border

to the level of 10. This made our criteria look like this:

100
250

1
 i ip (6).

Processing storage media sectors under (6) gave us the

type II error rate of about 0.28 which is still acceptable. The

type I error rate depends of file types sectors of which are

present and finding its precise value in different cases is the

goal of our following research.

IV. POSSIBLE REASONS FOR FILE PARTS IDENTIFICATION

DEMAND

The most obvious possible application for the

aforementioned results is the enhancement of different file

carving algorithms that deal with fragmented files and require

complete testing of possible file data. Taking into account

Garfinkel’s results in [2] and the storage media size growth

the fragmentation because of lack of storage space can be

expected to become a rarer event. Taking this into account the

actual demand for identification techniques may be

questioned.

With the growing amount of file carving software and

publications describing the algorithm of data recovery we find

it possible that a special kind of software can appear. If the

user wants his personal data to be deleted with the minimal

chance of its recovery then user’s files can be allocated so that

the majority of file carving techniques or at least the most

basic of them would fail to recover any private data. This can

be achieved with no need to actually rewrite the memory units

with ones and zeroes which may require significant time. A

user seeking to keep his personal files confidential may use

the combination of a quick way to corrupt file system data

(which is expected to take much less time than doing similar

procedure with the whole storage medium) and the special

way of allocating files. We can suppose that the logical

addresses of a storage medium can be purposely remapped

much like the sectors under the influence of the way wear-

leveling algorithms or bad sectors remapping algorithm are.

The fact that wear-leveling algorithm do not create any

significant troubles for users be that unsatisfactory low access

speed or any file operating errors makes it possible to expect

that such an anti-carving algorithm would not create them

either.

In case such an algorithm exists and allocates files

choosing clusters for allocation randomly from the whole set

of free clusters then recovery of every file will require using

of special techniques dealing with highly fragmented files.

Pre-carving identification that can reduce the amount of

clusters to be tested can significantly increase their speed of

operation.

V. CONCLUSION

In this paper we have offered techniques for identification

of JPEG files clusters and sectors. These techniques can be

used in two ways.

First all the data blocks of data storage medium can be

processed separately and divided into two parts – likely

belonging to JPEG files and unlikely belonging to JPEG files.

That pre-carving procedure is highly parallelizable and can be

implemented on multiprocessor systems such as GPU which

will be done during our following research.

Second it can be used for creating the post-carving

software that would be able to reject clusters of other files

from incorrectly carved JPEG files.

REFERENCES

[1] A. Pal, N. Memon, The Evolution of file carving, IEEE Signal

Processing Magazine, vol. 26, issue 2, 2009, pp.59–71.

[2] S. L. Garfinkel, Carving contigious and fragmented files with fast object
validation, Digital Investigation, vol. 4S, 2007, pp. S2–S12.

[3] A, Pal, H. T. Sencar, N. Memon, Detecting file fragmentation point
using sequential hypothesis testing, Digital Investigation, vol. 5, 2008,
pp. S2–S13.

[4] H. T. Sencar, N. Memon, Identification and recovery of JPEG files with
missing fragments, Digital Investigation, vol. 6, 2009, pp. S88–S98.

[5] CCITT T.81 (09 /92) Digital Compression and Coding of Continuous-
tone Still images. The international telegraph and telephone consultative
committee, ITU.- 1993.

[6] A. Sorokin, On differentiation of clusters belonging to JPEG files,
Problemi informatsionnoy bezopasnosti. Kompjuternie sistemy
[Problems of information security. Computer systems], 2012, vol. 4, pp.
61–67 (in Russian).

[7] N. Kostylova, A. Sorokin, On elaboration of the method of identifying
clusters belonging to JPEG files, Bezopanost’ informatsionnih
tehnologiy [Information technologies ecurity], 2014, vol. 4, pp. 53–58
(in Russian).

