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Hodgkin-Huxley formalism

The Hodgkin — Huxley model is a mathematical model that describes the generation and
distribution of action potentials in neurons. Similar models were subsequently created for

other electrically excited cells: cardiac myocytes, pancreatic beta cells
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Multistability is a ubiquitous Phenomenon

Multistability of oscillatory and silent regimes is a ubiquitous phenomenon exhibited by
excitable systems such as neurons, cardiac cells, pancreatic beta-cells etc.
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Hodgkin-Huxley-type of model with bursting

Sherman model

Tablel. Parameters for original model
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(d) current of Ca™" (2

Bistability between silent and bursting states
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Modified model with new K* ion channel
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FIG. 2. Dependence of the membrane posential on the different ions: (a) calcium channel; (b) potassium channel: (¢) probability function of new on channel:
} (red) and sum of current Ca™" (2} and current of new channel (6) (blue ): (o) fast (blue) and slow (red) manifolds of the modified model

(8), Supplementing parameters for the new ion channel; ggo=0.14, 6 =1 mV, and V,=—46mV.



The simplest homogeneous networks:
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FIG. 2. Behavior of two coupled S-cells with bursting dynamics. (a) Schematic
representation of the model. (b) Bifurcation trees estimated from Poincaré sec-
tions at the hypersurface n‘ = 0.003 when g,y is scanned in both directions
(violet: forward, gray: backward). k' = 0,i = 1,2 and other parameters as in
Fig. 1. Exemplary phase portraits depicting coexistence between synchronized
bursting and (c) periodic or (d) aperiodic attractors are also shown for g v = 0.03
and 0.15, respectively. (e) Estimated basins of attraction of the coexisting burst-
ing attractors for g,y = 0.15 when starting from the following initial conditions:

n§” = 0.003, S§ = 0.1889747, n?’ = 0.0025039, S}’ = 0.188.956 6.



The simplest homogeneous network with bistability
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FIG. 3. Behavior of two coupled S-cells with dysfunctional potassium channels. (a) Schematic representation of the two-cell system. (b) (Top) Bifurcation tree estimated

from Poincaré sections at the hypersurface and n® = 0.003 constructed for fixed initial conditions: V" = —50.784, n{” = 0.0245, S = 0.1774, V{® = —49.084,

n},z’ = 0.027 105, S},z’ = 0.19648, as well as (bottom) probability of the appearance of coexisting attractors in dependence on the coupling strength g, . kK = 1,

i = 1,2 and other parameters as in Fig. 1. Exemplary basins of coexisting attractors for various strength of coupling: (c) g. v = 0.004; (d) g.v = 0.00663; (e) g.v = 0.02;
() gev = 0.12. For (c){f), the initial conditions of the other variables were fixed in steady state |’ = 0.027 105, ng’ = —49.084, njf’ = 0.027 105, S(‘f’ = 0.196 48. Gray:
aperiodic dynamics; violet: bursting dynamics; red: steady state.



Larger homogeneous networks with bistability
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Fig. Behavior of network of coupled beta-cells with
dysfunctional potassium channels. (a) Schematic
representation of the network-cell system. (b)
Probability of the appearance of coexisting attractors
in dependence on the coupling strength gc,V . k(i) =
) 1,i=1, 2 and other parameters as in Fig. 1.

50

0 0.1 0.2 0.3 0.4 0.5 0.6

' . ~ S . 3
0 0.1 0.2 0.3 0.4 0.5 0.6

Dominance of silent
dynamics for certain level
of coupling strength




The simplest heterogeneous networks with bistability
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Larger heterogeneous networks with bistability
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FIG. 5. Behavior of mixed g-cells population. (a) (Top) Schematic representation of globally coupled networks of increasing size, where only a single cell does not have
a channel dysregulation (red color of node responds to k* = 1, violet color to k™ = 0) and (bottom) a corresponding plots of coupling sirength thresholds for steady
state stabilization in dependence on the size of the population (N) for globally (light blue) and locally (dark blue) coupled cells. Schematic representation of locally coupled
population in Fig. 5(d), left. Probability of the appearance of coexisting attractors in dependence on the coupling strength for the minimal population (b) of N = 3 coupled

cells, as well as for (c) N = 12 globally or (d) locally coupled cells. Other parameters as in Fig. 1. g5, - g..v, threshold for which the steady state is stabilized.

Stabilization of
equilibrium is possible
for larger networks,
when number of
oscillators with
bistability more then
N/2, N is size of
network.

Effect for globally and
locally coupled
network is the same.
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Conclusion

Homogenous networks with bistability demonstrates dominance of
silent dynamics for certain level of coupling.

In heterogeneous networks stabilization of equilibrium is possible,
when number of oscillators with bistability more then 50% in
network.

Stabilized silent state in heterogeneous networks doesn’t dominate,
possibility to obtain such kind of behavior is less the 20%

Effect for globally and locally coupled networks is the same.
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