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Abstract—Travelling chimera states are a dynamical regime in
homogeneous networks where coherent and incoherent domains
coexist and the latter moves across the network with time. For
such travelling chimeras we can define its speed as a number of
elements by which an incoherent domain is shifted per unit time.
In this paper, we propose a new approach to calculate the speed
of such traveling chimeras. We validate our method by computing
the travelling chimera speed in a ring of type-II Morris-Lecar
neurons with asymmetrical nonlocal inhibitory connectivity. The
main advantage of our approach is that all computations of
the speed can be done automatically, opening new opportunities
for large-scale scanning and analysis of parametric regions in
dynamic systems.

Index Terms—travelling chimera, spiking neural networks,
travelling chimera speed, synchronization

I. INTRODUCTION

Synchronization is an important property of networks of

intercoupled active elements. Suppose that we observe a state

of a homogeneous network, where one part of the elements

is synchronized, while another forms an incoherent domain.

In that case, this dynamic regime is called a chimera state.

Chimera states were initially found in a ring of coupled phase

oscillators [1]. Subsequently these states were identified in

coupled systems of elements of different nature [2–5], includ-

ing the spiking neural networks with mostly ring connectivity

topologies [6–12]).

When the incoherent domain moves across the network

without any external control, the network exhibits a travelling

chimera. Travelling chimeras are observed for different sys-

tems of phase oscillators [13, 14], mechanical systems [15],

electromagnetic oscillators [16], systems with hierarchical

connectivity [17] and neural networks [18, 19].

One of the simplest methods used to identify chimera

states is by visualizing activity snapshots and the frequency

distribution. An activity snapshot shows the distribution of

values of an oscillating variable across the network at a fixed

time moment. The frequency distribution is defined as the

time-averaged spike rate for each element in the network.

Examining it we can easily find the coherent and the inco-

herent domains, their number, size, and variability depending

on the control parameter. Unfortunately, one cannot calculate

the frequency distribution directly for travelling chimeras: the

fact that the incoherent domain moves smooths the resulting

frequency across the network. On the other hand, if we

determine the speed of the moving incoherent domain, we can

switch to the traveling coordinates along the moving domain.

Moving to this travelling coordinate system gives a standard

time series according to which we can compute and plot the

frequency diagrams.

In order to find the speed of the travelling chimera, one

can use the definition based on the Fourier spectra that have

been suggested in [17] and shown to work well for neuronal

networks (see, for example, [18]). In short, this method is

based on the following idea; Gvien that we have an incoherent

domain moving along the ring, we can track the movement of

the maximum value of the oscillating variable. The speed of

this movement will be the speed of the chimera. So, we have to

consider the elements oscillating with the maximum frequency

for each fixed value of time. The indexes of these elements

form the time series. The second peak of Fourier spectrum of

this time series divided by the number of incoherent domains

represents the chimera speed.

This algorithm is not without drawbacks (Despite its ability

to calculate a travelling chimera’s speed accurately). First, it

is tailored to the ring topology since it assumes the periodic

motion of an incoherent domain. Second, its accuracy depends

significantly on the length of the time series, which can

play a crucial role in dynamics simulations of large systems.

Third, the search for the second frequency peak in the Fourier

transform is not always trivial due to noise. Fourth, this method

assumes that we know in advance the number of incoherent

clusters, which in the general case is also not a trivial task.

The above disadvantages have a significant impact when

calculating the speeds of travelling chimeras for biologically

relevant spike neural networks. Biological relevance implies a

large number of elements in the network and a topology that is

more complex than a simple ring. Notably, the third and fourth

drawbacks make automatic calculations of chimera speeds

nearly impossible. In this paper, we propose an alternative

approach for calculating the speed of a travelling chimera that

is based on the maximization of the largest coherent domain

size. This new approach is free from the disadvantages listed

above, is easy to implement, and also works automatically for
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a wide range of travelling chimeras.

II. NETWORK DESCRIPTION

While our new method works automatically for complex

connectivity topologies, as a paradigmatic example we first

explain it for a simple ring network. To validate the new

approach, we considered a system that demonstrate a travelling

chimera regime – a ring network of type II-excitable Morris-

Lecar neurons [20] with the unidirectional nonlocal inhibitory

connectivity:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

CV̇i = Iapp − gCam
inf
i (Vi − ECa)−

−gKwi(Vi − EK)− gL(Vi − EL) + Isyni ,

ẇi = φ(winf
i − wi) cosh

Vi−V3

2V4

winf
i = 0.5

(
1 + tanh Vi−V3

V4

)
minf

i = 0.5
(
1 + tanh Vi−V1

V2

)
(1)

where i ∈ 1..N , N is number of neurons. Vi is a membrane

potential of i-th neuron. wi and mi are the fraction of open

K+ and Ca2+ channels, respectively. EK , ECa, EL are the

reversal potentials for potassium, calcium and leak channels,

respectively. gK , gCa, gL are corresponding conductances.

Iapp is an applied current. C is the membrane capacity. The

neurons are characterized by type II excitability.

Isyni is a synaptic current supplied to i-th neuron. The

inhibitory GABAA synapses are given by first order kinetics

[21]: ⎧⎨⎩Isyni =
gsyn

N

∑i+R
j=i+1 xj(VR − Vi)

ẋj = α 1

1+exp(−Vj−Vsyn

Kp
)
(1− xj)− βxj

(2)

Here VR is the reversal potential, Vsyn is the threshold,

Kp is the synaptic activation, gsyn is the synaptic strength,

r = R
N is the connectivity parameter, R is the number of

connections, xj is the fraction of effective neurotransmitter

resources released by presynaptic terminal into the synaptic

cleft in the active state of the synapse. The topology of the

network is a ring. The fixed parameters are presented in Table

I.

Table I
THE FIXED NEURONAL NETWORK PARAMETERS

gK = 8 mS/cm2 EK = −80 mV V1 = −1.2 mV

gCa = 4.4 mS/cm2 ECa = 120 mV V2 = 18 mV

gL = 2 mS/cm2 EL = −60 mV V3 = 2 mV

φ = 1/25 C = 20 μF/cm2 V4 = 30 mV
α = 1.1 Kp = 5 Vsyn = 2 mV
β = 0.19 N = 500 VR = −60 mV

Numerical integration was performed (1-2) using the fixed

step Euler method (100 μs). Simulation time was 30 s.

III. CHIMERA SPEED CALCULATION

A. Frequency distribution

A convenient and simple way to analyze a chimera state is

to construct a frequency diagram. It represents the distribution

of frequencies for each network element (in our case it is a

neurons), averaged over a fixed time interval:

f [V (i, t)] =
1

Ttotal

∣∣∣{t : V (i, t) = Vthr & V̇ (i, t) > 0
}∣∣∣ ,

(3)

where V (i, t) is the membrane potential of the i-th neuron,

V̇ (i, t) is its time derivative, Vthr is the value of the threshold

after which the spike happens, and Ttotal is the duration of

the time series. If we plot this distribution, we can visually

evaluate the number of incoherent clusters, their size, presence

of neurons that demonstrate subthreshold oscillations.

For travelling chimera states one cannot plot frequency

diagrams directly, since the chimera moves across the ring.

Given that the speed of the chimera vchi, defined as the number

of network elements in the chimera that move per unit of

time, is known in advance, we can move to travelling chimera

coordinates: V (i, t) → V (i + vchit, t). In these travelling

coordinates we de facto freeze the movement of the incoherent

cluster and can distinguish clearly the coherent and incoherent

groups of neurons. Figure 1 shows a comparison of the raster

plots and the frequency distribution before and after moving

to the travelling chimera coordinates.

Figure 1. Initial (A) and traveling wave coordinates (B) raster plots in the
case of travelling chimera state and corresponding frequency diagrams (C)
and (D).

B. Main idea for the chimera speed calculation

We proceed to develop our approach to calculate the

chimera speeds that is devoid of the disadvantages associated

with the older method (listed above). The most important

required property for the new approach is that it must to be

automatic.

We propose to develop a heuristic functional H[v], which

will measure the quality of the chimera localization for a given

speed. Using this functional, we can use it to compute the

values of speed v by maximizing the functional directly in a

reasonable range of speeds from 0 to vmax with a fixed step:

vchi = argmax
v

H[v]. (4)
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Table II
CALCULATION RESULTS OF THE SPEEDS FOR DIFFERENT FORMS OF THE HEURISTIC FUNCTIONAL AND THE FOURIER-METHOD WERE COMPARED WITH

THE EMPIRICAL GROUND TRUTH RESULT. UNSUCCESSFUL EXPERIMENTS ARE MARKED IN RED, WHERE THE OBTAINED SPEED WAS SIGNIFICANTLY

DIFFERENT FROM THE GROUND TRUTH. THE TEST NUMBERS CORRESPOND TO THE NUMBERS OF THE CHIMERIC REGIMES SHOWN IN THE

SUPPLEMENTARY MATERIALS

test #1 test #2 test #3 test #4 test #5 test #6 test #7 test #8 test #9 test #10
H(Ncoh[v]) 0.0160 0.0803 0 0.0006 0.0204 0.0095 0.0194 0.0085 0 0.0014
H(Ninh[v]) 0.0165 0.0812 0.0420 0 0.0202 0.0095 0 0.0085 0 0.0011
H(D[v]) 0.0165 0.0803 0.0420 0.0895 0.0723 0.0837 0.0720 0.0590 0.0749 0.0897
H(Ncoh[v], Ninh[v]) 0.0164 0.0805 0.0420 0 0.0202 0.0095 0.0194 0.0085 0 0.0012
Fourier spectrum method 0.0175 0.0800 0.0417 0.0038 0.05 0.01 0.0512 0.0563 0.0750 0.0275
ground truth 0.0165 0.0805 0.0420 0 0.0202 0.0097 0.0194 0.0085 0 0.0012

Next, we consider the possible choices of H[v].

C. Heuristic functional form
Comparing the Fig. 1A and Fig. 1B, we can try to formalize

a characteristic that quantifies that the chimera is stationary in

the new coordinates and select the heuristic functional.
a) Size of the largest coherent group: For example, based

on the reasoning presented above, H(v) can be equal to the

size of the largest group of neurons with identical frequency

in the travelling chimera coordinates V (i+ vt, t):

H[v] = Ncoh(v) :=max k : ∃j such that

fj(v) = fj+1(v) = · · · = fj+k−1(v)

Here operators Ncoh(v), for the fixed value v, shows the size

of the groups that consist of the neurons that oscillate with

the same spiking frequency fj , (j ∈ [1, N ]).
b) Clusters of subthreshold oscillations: In the case of a

subthreshold oscillation cluster moving, H[v] it can be equal

to the size of the largest group of the neurons that oscillate

with subthreshold frequency:

H[v] = Ninh(v) := |{j : fj(v) < thresh}|
Here Ninh(v) shows the maximum numbers of neurons

demonstrating subthreshold oscillations.
c) Weighted sum: For our system with inhibitory

synapses, we observed a complex multchimera where inco-

herent clusters consist of both asynchronous elements and

elements that demonstrate subthreshold oscillations. So, we

can choose the weighted sum of these heuristics:

H[v] =
Ncoh[v]

||Ncoh[v]|| +
Ninh[v]

||Ninh[v]|| , (5)

Here, the norm is the measure of the spread of the given

heuristic function: the maximum value minus the minimum

value presented in the considered interval of speeds.
d) Frequency variance: We can develop another kind of

heuristic. Consider a pair of frequency distribution graphs in

Fig. 1. Let’s go to a coordinate system where the chimera

is static. The frequency distribution will have a wider spread

compared to the original coordinates. Then we are free to take

the frequency variance to measure the correctness of the choice

of the chimera speed.

H[v] = D[v] =

N∑
j=1

(fj [v]− 〈fi[v]〉i)2 (6)

where fi[v] = f [V ((i+ tv) mod N, t)] and 〈fi[v]〉i is the

spatial average (simulations not shown).

Then, at different values of the speed, we will move to the

travelling coordinate system and calculate the frequency series.

The speed at which this series will reach its maximum will be

our desired chimera speed.

IV. TEST RESULTS

We tested different types of heuristic functional H[v] and

Fourier spectrum method by calculating the speed for a test set

of travelling chimeras (see Suppl.). The test results are shown

in the Table II. For the Fourier spectrum method, we calculated

a dynamic that lasted 10 seconds. For the new method, we

calculated a dynamic of 2 seconds.

We can see examples of how different heuristics work

better or worse depending on the chimera’s complexity and

characteristics. In fact, the Ncoh[v] heuristic works with ex-

cellent accuracy for all the tests except when only clusters

of subthreshold oscillations are observed. Adding Ninh[v], we

increase the accuracy of the speed calculation, and also expand

the capabilities of the method. The variance-based heuristic

and the Fourier method work well only when the chimera is

well developed. This means that a big frequency spread is

required for their correct work (see tests 4, 7, 8, 9).

Thus, the new method has several advantages over the

previous one:

1) It does not depend on the number of incoherent clusters

in a multichimera. This is important because there are

no robust methods for such calculations.

2) Its accuracy does not depends on the length of the time

series that is fed to it as input.

3) It works well for very low chimera speeds, making it

possible to track a parametrically-driven smooth stop of

the chimera.

4) It works well even for a complex types of chimera,

including domains of subthreshold oscillations, as well

as phase clustering.

5) It can be implemented as an automatic function.

6) It is not tied to periodic network topology
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SUPPLEMENTARY

Figure 2. Test set. Rasterplots (A) in the case of travelling chimera state
and corresponding frequency diagrams in initial (B) and traveling wave
coordinates (C).
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