

All the stable sets I know: definitions, characterizations, relations, generalizations, interpretations

Andrey Subochev

Decision Choice and Analysis Laboratory (DeCAn Lab), National Research University Higher School of Economics

Alternatives, preferences, choices

- A the *general set* of alternatives.
- X the *feasible set* of alternatives: $X \subseteq A \land X \neq \emptyset$. The feasible set is a variable.
- R social preferences, $R \subseteq A \times A$.
- R is presumed to be complete: $\forall x \in A, \forall y \in A, (x, y) \in R \lor (y, x) \in R$.
- P-strict social preferences, $P\subseteq R$: $(x,y)\in P\Leftrightarrow ((x,y)\in R\land (y,x)\notin R)$.
- A social preference-based choice correspondence is a mapping $S: 2^A \setminus \emptyset \times 2^{A \times A} \to 2^A$ with arguments X and P and values in the set of subsets of X.
- It is presumed that S depends on X and P only through restriction of P on X:

$$S=S(X, P)=S(P|_X)\subseteq X$$

i.e. social choices are dependent on social preferences for available alternatives only.

Stable sets

A nonempty subset *Y* of *X* is called

R-dominant if $\forall x \in X \backslash Y$, $\forall y \in Y$: yRx

P-dominant if $\forall x \in X \backslash Y$, $\forall y \in Y$: yPx

P-dominating if $\forall x \in X$, $\exists y \in Y$: yPx

P-externally stable if $\forall x \in X \backslash Y$, $\exists y \in Y$: yPx

R-externally stable if $\forall x \in X \backslash Y$, $\exists y \in Y$: yRx

Self-protecting if $\forall x \in X$, $(\exists y \in Y: yPx) \lor (\forall y \in Y, yRx)$

Weakly stable if $\forall x \in X \setminus Y$, $(\exists y \in Y: yPx) \lor (\forall y \in Y, yRx)$

P-dominant

P-dominating

P-ext. stable

Weakly stable

Minimal stable sets

A set Y is called *minimal* with respect to a given property if Y has the property and none of Y's proper nonempty subsets does.

Tournament solutions: the union of all minimal

R-dominant sets WTC a.k.a. the weak top cycle (Good 1971, Smith 1973)

P-dominant sets STC a.k.a. the strong top cycle (Schwartz 1970, 1972)

P-dominating sets D (Duggan 2013, Subochev 2016)

P-externally stable sets ES (Wuffl, Feld, Owen & Grofman 1989,

Subochev 2008)

R-externally stable sets *RES* (Aleskerov & Subochev 2009, 2013)

Self-protecting sets SP (Roth 1976, Subochev 2020)

Weakly stable sets WS (Aleskerov & Kurbanov 1999)

Cooperative game interpretation

Sets of alternatives can be interpreted as *coalitions* (e.g. sport teams, political cliques etc.). External stability guaranties a victory of a coalition (represented by its champion) in a duel with any outsider (the "Three Musketeers" principle). Consequently, ES can be viewed as a solution of the following simple

X is the set of players;

cooperative game:

- Value function v(Y)=1 if Y is externally stable, v(Y)=0 otherwise.
- Then *ES* is the support of Banzhaf and Shapley-Shubik power indices.

Externally stable

The covering relations and the uncovered sets

The covering relations (Fishburn, 1977; Miller, 1980)

The covering relation $C(P|_X) \subseteq X^2$, is a strengthening of the strict social preferences P:

- 1. The Miller covering relation C_M : $x C_M$ $y \Leftrightarrow x P y \land P|_{X^{-1}}(y) \subset P|_{X^{-1}}(x)$.
- 2. The weak Miller covering C_{WM} : $x C_{\text{WM}} y \Leftrightarrow P|_{X}^{-1}(y) \subset P|_{X}^{-1}(x)$.
- 3. The Fishburn covering $C_F: x C_F y \Leftrightarrow x Py \land P|_X (x) \subset P|_X (y)$.
- 4. The weak Fishburn covering C_{WF} : $x C_{WF} y \Leftrightarrow P|_X (x) \subset P|_X (y)$.

Note that $C(P|_X)$ is not a restriction of C(P) on X: $C(P|_X) \not\equiv C(P) \cap X^2$.

The set of all alternatives that are not covered in *X* by any alternative is called *the uncovered set* of a feasible set *X*.

The set of all alternatives that are not weakly covered in *X* will be called *the inner uncovered set* of a feasible set *X*.

The Miller and Fishburn uncovered sets and their inner versions will be denoted $UC_{\rm M}$ and $UC_{\rm F}$, $UC_{\rm IM}$ and $UC_{\rm IF}$, correspondingly.

The uncovered sets and the externally stable sets

Theorem A. Suppose $|X| < \infty$. $x \in ES \Leftrightarrow \exists y \in UC_F$: $x P y \lor x \in UC_F$.

Corollary to Theorem A. ES is a union of UC_F and all P(x) such that $x \in UC_F$

Theorem B. Suppose $|X| < \infty$. $x \in RES \Leftrightarrow \exists y \in UC_{IM}$: x R y.

Corollary to Theorem B. RES is a union of all R(x) such that $x \in UC_{IM}$

Theorem C. Suppose $|X| < \infty$. $x \in D \Leftrightarrow \exists y \in UC_{\mathsf{IF}}$: x P y.

Corollary to Theorem C. D is a union of all P(x) such that $x \in UC_{1F}$

$$UC_{\mathsf{F}} \subseteq \mathsf{ES}$$
 $UC_{\mathsf{M}} \subseteq \mathsf{RES}$

D is not nested with the UC even when P is a tournament.

Relation to other solutions (Tournaments)

	C	SL	В	MC	BP	UC	D	ES	UCp	TC
D	Æ	É	É	É	É	Ç	=	Ì	Ì	Ì
ES	É	É	É	É	É	É	É	=	1	Ì

Relation to other solutions (General case)

	UC_{IM}	UC_{M}	$UC_{ m IF}$	UC_{F}	$UC_{ m McK}$	UC_{D}	D	WS	ES	RES	UCp	STC	UT	WTC
D	Æ	Ď	Æ	Æ	Ç	Ç	=	Ç	Ì	Ç	Ì	Ç	Ç	Ì
WS	Æ	Ç	Æ	Ç	Ç	Ç	Ç	=	Ç	Ç	Ì	Ç	Ì	Ì
ES	Æ	Ç	É	É	Ç	Ç	É	Ç	=	Ç	Ì	Ç	Ç	Ì
RES	É	É	Ç	Ç	Ç	Ç	Ç	Ç	Ç	-	Ç	Ç	Ç	

Infinity of alternatives. Problems and (counter)examples

- 1. The uncovered set may be empty.
- 2. An externally stable set may not contain a minimal externally stable subset. The same is true for dominating sets.
- 3. The propositions of Theorems A, B and C may not hold.

Example 1: X - an infinite sequence $\{x_n\}$, n=1, 2, 3,...

 $x_n P x_m \Leftrightarrow n > m$. P is a tournament and a linear order.

Evidently, $x_nCx_m \Leftrightarrow n > m$. Consequently, $UC = \emptyset$.

Any infinite subset of *X* is dominating and, consequently, externally stable.

Any finite subset of X is not externally stable and, consequently, dominating.

Since any infinite set always includes a proper subset which is infinite, there is no minimal dominating or externally stable set.

Example 2: X - three infinite sequences $\{x_n\}$, $\{y_n\}$ and $\{z_n\}$, n=1, 2, 3, ... $x_nPy_m \Leftrightarrow n>m$; $y_nPy_m \Leftrightarrow n>m$; $z_nPz_m \Leftrightarrow n>m$; $\forall n, \forall m, x_nPy_m \land y_nPz_m \land z_nPx_m$.

Then $UC=\emptyset$, but any triplet $\{x_n, y_m, z_k\}$ is a minimal dominating and a minimal externally stable set; consequently, D=ES=X, which contradicts all three theorems.

Infinity of alternatives. Positive results

Proposition: Suppose there is a topology Ω such that

 $R(x) \cap X$ is compact in Ω for all $x \in X$.

Then $UC_{IF} \neq \emptyset$

(Banks, Duggan & Le Breton 2006)

Lemma: Suppose there is a topology Ω such that X is compact in Ω , and $P^{-1}(x) \cap X$ is open for any $x \in X$.

Then any dominating set contains a finite dominating subset.

Consequently, $D \neq \emptyset$. Consequently, $WS \neq \emptyset$ and $RES \neq \emptyset$.

Additionally, if the core is either empty or *P*-externally stable then $ES \neq \emptyset$.

Theorem D (Generalization of Theorem C):

Suppose there is a topology Ω such that

X is compact in Ω , and $P^{-1}(x) \cap X$ is open for any $x \in X$.

Then $x \in D \Leftrightarrow \exists y \in UC_{\mathsf{IF}}: x P y$.

Thank you!