

О выборе победителя в турнире: теория и приложения

Андрей Субочев

Международный центр анализа и выбора решений (DeCAn Lab)

Национальный исследовательский университет «Высшая школа экономики»

Alternatives, comparisons, choices

X – the *general set* of alternatives.

A – the *feasible set* of alternatives: $A \subset X \land A \neq \emptyset$. The feasible set is a variable.

R – results of binary comparisons, $R \subseteq X \times X$.

R is presumed to be complete: $\forall x \in X, \forall y \in X, (x, y) \in R \lor (y, x) \in R$.

 $R|_A = R \cap A \times A$ – restriction of R onto A.

 $(A, R|_{A})$ – abstract game.

P – asymmetric part of R, $P \subseteq R$: $(x, y) \in P \Leftrightarrow ((x, y) \in R \land (y, x) \notin R)$.

If $P|_A$ is complete, $\forall x \in X$, $\forall y \in X \land y \neq x$, $(x, y) \in P \lor (y, x) \in P$, then $(A, P|_A) - tournament$.

Tournament solutions

A tournament solution S is a choice correspondence S(A, P): $2^{X}\setminus \emptyset \times 2^{X\times X} \to 2^{X}$ that has the following properties:

- 0. Locality: $S(A, P) = S(P|_A) \subseteq A$
- 1. Nonemptiness: $\forall A, \forall P, S(P|_A) \neq \emptyset$;
- 2. Neutrality: permutation of alternatives' names and choice commute;
- 3. Condorcet consistency: if there is the Condorcet winner w for $P|_A$ then $S(P|_A) = \{w\}$.

	x_1	x_2	x_3	x_4	x_5	
x_1	0	1	0	1	0	
$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array}$	0	0	1	1	0	
x_3	1	0	0	1	0	
X_4	0	0	0	0	1	
X_5	1	1	1	0	0	

Tournament matrix

Tournament digraph

Properties a.k.a. Axioms

- *Idempotency*: $\forall A$, S(S(A))=S(A).
- The Aizerman-Aleskerov condition: $\forall A, \forall B, S(A) \subseteq B \subseteq A \Rightarrow S(B) \subseteq S(A)$.
- generalized Nash independence of irrelevant alternatives (ind. of outcasts):
- $\forall A, \forall B, S(A) \subseteq B \subseteq A \Rightarrow S(B) = S(A)$.

NIIA ⇔ Idempotency ∧ the Aizerman-Aleskerov condition

Monotonicity (monotonicity w.r.t. results):

$$\forall P_1, P_2 \subseteq X^2, \ \forall A \subseteq X, \ \forall x \in S(P_1|_A), \ (P_1|_{A \setminus \{x\}} = P_2|_{A \setminus \{x\}} \land \forall y \in A, \ x P_1 y \Rightarrow x P_2 y) \Rightarrow x \in S(P_2|_A)$$

- Independence of irrelevant results (ind. of losers): $\forall P_1, P_2 \subseteq X^2, \ \forall A \subseteq X, \ (\forall x \in S(P_1|_A), \forall y \in A, \ ((xP_1y \iff xP_2y) \land (yP_1x \iff yP_2x)) \Rightarrow S(P_1|_A) = S(P_2|_A)$
- Computational simplicity: There is a polynomial algorithm for computing S.

Solutions

Uncovered set
$$UC = \{x \in A \mid \forall y \in A, yPx \Rightarrow \exists z \in A: xPzPy\}$$

Copeland set
$$C = \operatorname{argmax} |\{y \in A \mid xPy\}|$$

Slater set
$$SL = \{ \max(L_k) \mid L_k \in \text{argmin } \kappa(L_k, P) \},$$

where
$$L_k \subseteq A \times A - a$$
 linear order, $\kappa(L_k, P) - \text{the Kendall distance}$

Banks set
$$B = \{\max(L_k) \mid L_k \subseteq P \subseteq A \times A - \max \}$$
 chain in $P\}$

Minimal covering set
$$MC$$
, $\forall x \in MC$, $x \in UC(P|_{MC}) \land \forall x \notin MC$, $x \notin UC(P|_{MC \cup \{x\}})$

Bipartisan set
$$BP = \text{support}(Nash \ Equilibrium}(G(P|_A))$$
, where $G(P|_A)$ is a two-player zero-sum non-cooperative game on a tournament $P|_A$

Stable sets

A nonempty subset B of A is called

Dominant if $\forall x \in A \backslash B$, $\forall y \in B$: yPx

Dominating if $\forall x \in A$, $\exists y \in B$: yPx

Externally stable if $\forall x \in A \backslash B$, $\exists y \in B$: yPx

P-dominant

P-dominating

P-ext. stable

Minimal stable sets

A set *B* is called *minimal* with respect to a given property if *B* has the property and none *of* B's proper nonempty subsets does.

Tournament solutions: the union of all minimal

Dominant sets TC a.k.a. the Top cycle

Dominating sets D

Externally stable sets ES

Axiomatic analysis

	UC	С	SL	В	MC	BP	TC	D	ES
Idempotence	NO	NO	NO	NO	YES	YES	YES	NO	YES
AA property	YES	NO	NO	YES	YES	YES	YES	NO	YES
Outcast (Nash independence)	NO	NO	NO	NO	YES	YES	YES	NO	YES
Monotonicity	YES	NO	YES						
Independence of losers	NO	NO	NO	NO	YES	YES	YES	NO	YES
Computational simplicity	YES	YES	NO	NO	YES	YES	YES	YES	YES

Ranking based on a tournament solution

Suppose, we are interested in ranking alternatives from A.

Then we may use the following procedure:

- Tournament solution S(P, A) choses the set $B_{(1)}$ of the best alternatives in A, $B_{(1)} = S(P, A)$.
- Exclude these alternatives from A and apply S to the rest. $B_{(2)} = S(P, A \setminus B_{(1)}) = S(P, A \setminus S(P, A))$ will be the set of the second-best alternatives in A.
- By repeated exclusion of the best alternatives determined at each step of the procedure the set A is separated into groups $B_{(r)} = S(P, A \setminus (B_{(r-1)} \cup B_{(r-2)} \cup ... \cup B_{(2)} \cup B_{(1)}))$, and that is the ranking.
- Let r = r(x, P) denote the rank of x in this ranking.

The properties of the ranking rule based on sorting either by ES or by RES

- **Weak Pareto principle**: if x Pareto dominates y, then xQ (P)y.
- Weak monotonicity w.r.t the individual preferences Π_i (Smith's monotonicity):

$$(\Pi|_{A\setminus\{x\}} = \Pi'|_{A\setminus\{x\}} \land \forall i \in G, \forall y \in A, x \Pi_i y \Rightarrow x \Pi_i' y) \Rightarrow$$
$$\Rightarrow (\forall y \in A, xQ (P)y \Rightarrow xQ (P')y)$$

Independence of irrelevant classes of alternatives

Спасибо за внимание!

ul. Myasnitskaya, 20 Moscow, Russia, 101000 Phone: (495) 621-7983, Fax: (495) 628-7931 www.hse.ru