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Nonlinear dynamics of a remanufacturing duopoly model and
its chaos control

Abdelouahab M-S.'*, Amira R.!, Lozi R.!

!Laboratory of Mathematics and their interactions, Abdelhafid Boussouf
University
Center, Mila, 43000, Algeria.
Université Cote dAzur, CNRS, LJAD, Nice 06108 France.

* m.abdelouahab@ centre-univ-mila.dz

In this work, we formulated a two-dimensional discrete map that characterizes
the interactions between two firms. The first firm is an original equipment
manufacturer (OEM) exclusively producing and selling original products. The
second firm, known as the third-party remanufacturer, focuses on remanufac-
turing returned goods to create differentiated products. Firstly, we investigate
stability, bifurcations, and chaos. Using Jury’s stability criteria, the Cournot-
Nash equilibrium’s asymptotic stability is examined. The results show that, when
consumer willingness to pay and OEM’s relative speed of the output adjustment
are taken as a bifurcation parameters, the system undergoes flip bifurcations and
Neimark-Sacker bifurcations under certain conditions. The Lyapunov exponents
demonstrate that the system becomes chaotic through each of the previous
bifurcations. Furthermore, we suggest eliminating the chaotic behaviour, which
introduces unpredictability into the market, by making slight adjustments to one
of the system parameters over a short duration. To achieve this, we employ a
controller designed based on the OGY method. Finally, we conduct numerical
simulations to illustrate and emphasize the theoretical findings.

Keywords: Duopoly model; Remanufacturing; Competition strategy; Chaos;
chaos control.
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Bifurcations of Codimension 2 of Nonlinear Hybrid Dynamical
Systems with Constant Discretization Step

Akmanova S. V.

Nosov Magnitogorsk Technical State University

svet.akm_74@mail. ru

In this paper, we consider a continuous-discrete (a hybrid) system of the form

{ 2/ (t) = ar(p)z(t) + bu(w)y(tr) + a(z(t), y(te), 1), 1)
Y(trt1) = az()(teyr) + b2 ()y(tr) + 0(x(trra), y(tr), 1),

x,y € Ryt € [tg,tg+1),k=0,1,2,..., u € Risascalar parameter, |a(z,y, p)| =
ofl| + [yl), [b(z, y, )| = o(lx| + |y|) at |z[ + [y —= 0.
The moments of time ¢; set on R a uniform grid with a step h > 0:

O=to<ti=tot+th<to=ti+h<...<tppp=tpr+h<....

Let, for some p = po, system (1) have an equilibrium point x = 0,y = 0.

The functioning of the system (1) is carried out according to the standard
scheme. The system (1) in a certain sense is equivalent to a non-linear discrete
dynamical system, the compact representation of which has the form

up+1 = A, h)ug + &(ug, u, h), 2
where
x t
= [ y( t: ]
[ emton ) 0" 1)
ALY = 1y ()em " ag(uyar (i)~ (€90 — 1)by () + ba()

nonlinearity & (ug, i, h) is given by the matrix

12


mailto:svet.akm_74@mail.ru

_ 5($k7yk)a/¢§ h) :
§(up, p, h) = [ clonye) i h) | wherein

tr+h

(ti+h)a(p)

E(wlwy]w/j/; h) =e / e_sal(u)a(x<s7xk7yk)7yk7/1/) dS,

22

c(@r, yk), 13 h) = az(w)e(r, Y, ps h) + b(x(thi1), y(tr), 1),
1€ Cus 1, )| = o([full), [[u]] = 0.

The system (2) also at ;4 = p has an equilibrium point u = 0, system solutions
(1) and (2) are interconnected.

We study the question of bifractions of codimension 2 for system (1) in the
vicinity of the equilibrium pointz = 0,y = 0.

Sufficient signs for the existence of bifurcation points of codimension 2 in
system (1) are given in the report, taking into account the connection between
the solutions of systems (1) and (2).
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Geometric Properties of Planar and Spherical Interception
Curves

Aliyev Y. N.
ADA University

yaliyev@ada.edu.az

In the paper, some geometric properties of the following plane interception curve
defined by a nonlinear ordinary differential equation are discussed.

Planar Interception Curve. Suppose that two points P(z, y) and @), initially
at 0(0,0) and A(1,0), respectively, move with constant and equal velocities so
that @ is on the line z = 1, and P is on the ray OQ). What curve is defined by the
point P?

Let us denote r = |OP| and ZAOQ = 6. Since the speeds of the points P
and @ are equal, the length of the curve O P and the length of the line segment
AQ), which is tan 6, are equal for each 6. By using the well-known formula for the
length of a curve = r(#), given in polar coordinates, we find that

/9 V()2 4 (r'(t))3dt = tané. (1)
0

By taking the derivative of both sides of (1) and simplifying, we obtain ODE

1

HO) + (0 = — 7,

()
with initial condition r(0) = 0. This nonlinear equation appears in problems

related to the interception of high-speed targets by beam rider missiles. Note that
in the cartesian coordinates, (1) can be written as

/ VI+ ()2t = 2. 3)
0 x
By taking the derivative of both sides of (3) and simplifying, we obtain

2?14+ (Y () =y'z -y, (4)
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which in particular agrees with y(0) = 0. A parametrization of the solution can be
written by solving (4) for y to obtainy = y/x — 22/(y/)2 + 1 = px — 2%/p? + 1,

where y = p > 0. Bynoting that dy = pdx and dy = pdx +axdp— 290 Vp?+ ldx—

2 d
x dp, a linear differential equation %% — = is obtained.
/7 p q

2\/p2+1 2y/p 2+1
By solvmg this equation, we obtain the parametrization

{I(p) = %/plfz_i_l f(in 2(1/%’ (5)
y(p) = px(p) — (x(p)>V/P>+1(p > 0).

Theorem 3.1 Suppose that the tangent line of the curve (4) at the point P, inter-
sects x-axis, y-axis, and the linex = 1 at points F, U, and T, respectively. If x is
the abscissa of the point P(z,y), then

[UP| = [OU] +|TQ),

(1-2)-|UP| = |TQ|,

x-|PT| = |TQ),

sin ZQPT = |OP| - sin® ZTQP,

the radius of the circle through O and tangent to the line UT at the point P is
equal to the radius of the circle through O and tangent to the line AT at the

point Q.

R DN~

Theorem 3.2 The length of the side P(), and the difference oflengths of the other
two sides of APQT approach to the same limit B?> asx — 17 :

(3
lim |PQ| = lim (|PT|—|TQ|) = (3) = B? ~ 0.3588850048,
r—1— r—1- 27
where B is the second lemniscate constant.

Spherical curve. Suppose that two points P and @, initially at B(0,0,1) and
A(1,0,0), respectively, move with constant and equal velocity so that @ is on the
great circle z = 0, 2 + y? = 1 of sphere 22 + y? + 22 = 1 with center O(0, 0, 0),
and P is on the great circle through B and @ of the sphere.

This spherical curve has similar geometric properties. There are connections
with the classical pursuit curve; Mercator projection; Gudermannian function;
lemniscate constants; Gauss’s constant; Spherical spiral; loxodrom; rhumb line;
stereographic projection and logarithmic spiral.
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Short-wave asymptotic solutions of a general hyperbolic
equation

Allilueva A. I.
Ishlinsky Institute for Problems in Mechanics RAS

esina_anna@list.ru

In this work considered a hyperbolic equations of the general form:

o\ g .0
(2’%) u:A(:mt, _i&v’iiﬂt) u, xzeR", wued, (1)
where A(x,t, p, po) is a matrix ! x [, whose elements are polynomials of degree
< mby (p, po)-

Hyperbolicity condition:

let A,,, be the highest homogeneous degree of m part of A by (p, po), then
1. A, (z,t, p, po) does not contain terms pj*;

2. the characteristic equation has the form

det(AmE - Am(x7tap7 A)) = 07

3. Aj(z,t,p) are smooth at p # 0, different with p # 0 and |\; — Ax| > ¢;5[p|.
Task. Let us have a general hyperbolic equation with

o(z)
€

A(‘r7tapap0):A( amvtapap0>7

where the parameter ¢ — 0, ®(z) : R® — R is a smooth function, and the
equation ¢ = 0 defines a smooth regular hypersurface M C R", just as in the
above problem.

Conditions on the matrix A(y, =, t, p, po).

1. Equation det(py* — A (y,x,t,p,po)) = 0, where A,, is the highest ho-
mogeneous in (p, pg) part of the matrix A has at p # 0 exactly m! of real roots
po = H,(y,z,t,p) relative to the variable py, and the functions H; smoothly
depend on all their arguments and tend to the limits of H;‘L (x,t,p)aty — +oo
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is faster than any power of y together with all derivatives. Obviously, H; are
positively homogeneous of degree 1 with respect to the variables p.

2. For € M, the matrix A, (y, z,t, V®,0) is invertible,

3. eigenvectors of the matrix (\™FE — A,,(x,t,p, A)) smooth vector functions.

Many papers have been devoted to equations with rapidly changing coeffi-
cients; the introduction of the fast variable y = ®(x)/e turns the right part of the
wave operator into operator of the form

P .0 1 o .0
A <€,$,t, _’L% - gv¢87y7 —Zat) .

Let’s set the initial conditions (Cauchy’s problem) of the following form

iso@) 0w
£

) %h:o:()v jzlaam_l (2)

uli—o = ¢°(2)e
where Sy, g are smooth functions, and ¢y is finite, V.So |suppepo 7 0,®|suppz, < 0
and suppp® (| M = (. Thus, the initial wave packet is located outside the localized
inhomogeneity; our goal is to describe the scattering of such a packet when it hits
the surface of M. As a result, we get wave packets reflected from this surface and
passed through it, which are described using asymptotic series.

The result of this work is an asymptotic series for solving the Cauchy problem;
it turns out that geometric optics (i.e. classical trajectories) are determined by
the “limiting” Hamiltonians H1 = c4(x)|p|, and the presence of a jump-like
perturbation leads to the restructuring of the complex Maslov sprout at the points
of the surface M — new planes describing the past and reflected waves appear.
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About singular Klein—-Gordon equation

Alzamili Kh.!, Shishkina E. L.1»2*
! Belgorod State National Research University
2Voronezh State University

*jlina_dico@mail.ru

We will deal with the singular Bessel differential operator B, :

2
(Bi= oyt 10 =100

——=—=—=t"= t>0, eR.
2 T poal ot i

We apply Hankel transform method to solve the initial value problem
[(AL)e — (Br)i)u = c?u, c>0, (1)
u(z,0;k) = f(x), u(z,0;k) =0, u=u(x,t;k), (2)

wherey; > 0,z; > 0,i =1,...,n,t > 0, A, = > B,, is the Laplace-Bessel
i=1

operator. We will call (1) the singular Klein—-Gordon equation. We obtain the

distributional solution of (1)—(2) in convenient space. Besides, we give formulas

for regular solution of (1)-(2) in particular case of k and of Cauchy the the singular

Klein-Gordon equation.

Weare looking for the solutionu € S., (R )xCZ, (0, 00) of (1)~(2),i.e. u(z, t; k)
belongs to S., (R} by variable = and belongs to C?Z, (0, co) by variable ¢. For
definitions spaces 5., (R ) and C?, (0, o) see [1].

Theorem. The solutionu € S.,(R%}) x CZ (0,00) of the (1)-(2) for k #
—1,—-3,—5,...is unique and defined by the formula

u(z, t; k) =
kmn—l|y|-1

= ) (8740 = o) i (0 = )] €) 4 )

Y
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where
2T (k4))

() fir s

In the case when k£ < 0 of the (1)-(2) is not unique. When & < 0 and k #
—1, -3, -5,... the difference between two arbitrary solutions is always of the
form

C(n,v,k) =

At Ru(t, 22 — k), A = const, (3)
where u(¢, x; 2 — k) is solution of the Cauchy problem
[(A)2 — (Bak)i ] u = Pu,
u(z,0;2 — k) = (), ug(z,0;2 — k) =0,

1 () is an arbitrary function or distribution belongingto S’ ,Whenk = —1, -3, -5, ...

ev’

a nonunique solution of the Cauchy problem (1)-(2) will contain a terms (3) and

e:i:%ﬂ'nil-\ (n+|’y|27k+1 )

k—n—|y|-1
- =+ ((t2 — |z|* = % +1i0), R f(as)) .
n = it1
(154 fl (25) :

In Theorem

(f # 9)4() = (f % g)s = / F)(T2g) (2)y” dy
i

is the generalized convolution generated by a multidimensional generalized
translation YT which is given by

(T f) (@) = "I f(2) = (T T ()

and each 7T actsfori=1,...,nis
T (%-i-l)
(VTY f) () =—=2 5 X
VT (%)
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2 2 saYi—1
X/f(xlw"vxifla\/xi + 77 = 22415 COS i, Tiy1, ..., Tp) SN 05 dp;.
0
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On calculating the classical capacity of quantum channels
generated by probability distributions on finite groups

Amosov G. G.
Steklov Mathematical Institute

gramos@mi-ras.ru
One of the most important tasks of quantum information theory is to calculate
the upper achievable limit for the number of quantum states used for encoding

when transmitting information through several channels used in parallel. The
report will tell about new results in this area.
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On reverse Faber-Krahn Inequalities

T. V. Anoop

Indian Institute of Technology Madras

anoop@ijitm.ac.in

In 1961, Payne-Weinberger showed that ‘among the class of membranes with
a given area A, free along the interior boundaries and fixed along the outer
boundary of a given length L, the concentric annulus has the highest fundamen-
tal frequency’ We discuss the extension of this result to the higher dimension
(IV > 3), namely, the reverse Faber-Krahn inequalities for the first eigenvalue of
the Laplace operator satisfying the mixed boundary conditions on domains with
holes.
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A note single-step difference schemes for the solution of
stochastic differential equations
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In the present work, the stability of an abstract Cauchy problem for the solu-
tion of stochastic differential equation in a Hilbert space with the time-dependent
positive operator is proved. In applications, theorems on stability estimates for
the solution of four types of the initial boundary value problems for the one
dimensional and multidimensional stochastic parabolic equation with dependent
coefficients in ¢ and space variables are proved. Single step difference schemes
generated by exact difference scheme are presented. The main theorems of the
convergence of these difference schemes for the approximate solutions of the
time-dependent abstract Cauchy problem for the stochastic parabolic equations
are established. In applications, the convergence estimates for the solution of
difference schemes for stochastic parabolic differential equations are obtained.
Numerical results for the % and % th order of accuracy difference schemes of the
approximate solution of mixed problems for stochastic parabolic equations with
Dirichlet, Neumann conditions are provided. Numerical results are given.
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Derivations on Operator Algebras

Shavkat Ayupov

This talk presents a full resolution of the problem stated by Ayupov in 2000, and
partly restated in 2014 by Kadison and Liu, concerning derivations on algebras
of measurable operators affiliated with von Neumann algebras. First we give
preliminaries from the theory of operator algebras, non-commutative integration
theory and show the physical background of automorphisms and derivations on
operator algebras.

The second part of the talk explains a background of the Ayupov-Kadison-Liu
Problem and its connection with general derivation theory in operator algebras
starting with fundamental results due to Kaplanski, Kadison, Sakai and others.
We shall cite and briefly explain major results concerning derivations on algebras
of unbounded operators and list results concerning some special cases of the
problem. Finally, the main result yielding the full resolution will be stated.
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Dualism of the Theory of Soliton Solutions for
Infinite-Dimensional Dynamical Systems and Pointwise
Functional Differential Equations

Beklaryan L. A.
CEMI RAS

Ibeklaryan@outlook.com

In the theory of plastic deformation, the following infinite-dimensional dy-
namical system is studied

miy; = Yi—1 — 2yi + Yir1 + (i), 1 €Z, y €R, teR, (1)

where the potential ¢(-), in particular, is given by a smooth periodic function.
The equation (1) is a system with the Frenkel-Kontorova potential [4]. Such a
system is a finite difference analog of a nonlinear wave equation, simulates the
behavior of a countable number of balls of mass m placed at integer points of
a numerical line, where each pair of adjacent balls is connected to each other
by an elastic spring, and describes the propagation of longitudinal waves in an
infinite homogeneous absolutely elastic rod. The most important class of waves
is described by solutions of the traveling wave type (soliton solutions).

This system is associated with the study of the canonical soliton bouquet
(Q.d,s,Z,Gr|Q,g) withT = (Q,d,s,Z,Q,g), where: Q =< G(t) =t+71 >,
T > 0, and, respectively, ) = Z; d = s = 1, and the selected element g of the
group @ coincides with the generator ¢; phase space K7 = [],.,R7, R} = R?
(the superscript 2 is due to the fact that the equations (1) is of the second order)
and the corresponding operator Gt and the function g.

The presented study demonstrates a fragment of some general approach. For
this approach, a formalism has been developed [1], the central element of which
is the existence of a one-to-one correspondence between soliton solutions of an
infinite-dimensional dynamical system and solutions of a functional differential
equation of pointwise type. For the presented finite difference analog of the wave
equation with a nonlinear potential of a general form, the presence of a number
of additional symmetries is also important. For such a system, the existence of a
family of bounded soliton solutions is established [2]. Previously, such a system
was studied in the case of a quadratic potential [3].
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Probabilistic models of fully nonlinear second order PDEs

Belopolskaya Ya. I.

Sirius University of Science and Technology, PDMI RAS
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We discuss two probabilistic models that allow to construct probabilistic repre-
sentations of a solution to the Cauchy problem

vy = ®(x,v, Vo, V20), v(0,2) =v(z), (t,z) € [0,T] x R%. 1
From the probabilistic point of view it is suitable to reduce (1) to a problem
us + ®(z,u, Vu, V2u) =0, u(T,z) = vo(z), (t,z) € [0,T] x R% 2

with respect to a function u(T — s,z) = v(s, x).

The models to be discussed are based on a possibility to construct different
probabilistic representations for a solution of (1). To construct the first model
assuming that the function ®(z,u,r,q),z € R*,u € R,r € R¥*? ¢q ¢ Rixdxd
has at least 3 bounded continuous derivatives in = we include the equation (1)
into a system of semilinear parabolic equations with respect to the function
V = (u, Vu, V%, V3u) of the form

1
Vs + 5AVVQV[AV]* +d"VV +BYVV +'V =0, V(T,z)=h (3)

where AV (t,2) = 2V,.F(z,u,r,q) and "', BV, ¢" are smooth bounded func-
tions depending on V, a" (z) = a(z, V(z).. To construct a probabilistic represen-
tation of a solution to (2) we fix a probability space (2, 7, P and a Wiener process
w(t) € R? defined on it. Next we consider a stochastic problem of the form

de(t) = a¥ (§())dt + AV (E(t))dw(t), &(s) =, (4)
dn(t) = " (E()n(t)dt + CV (E())(n(t), dw(t)), n(s)=he R  (5)
<h,V(S,J})> = E<ns7h(T)’h(§s,w(T))>' (6)

Here <h7 V> = 11:1 hmVim,q=1+d+ d? + d> and [CV]*AV =BY.
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Theorem 1. Assume that u(s) € C3(RY) satisfies (1). Then it admits a
probabilistic representation u(t, ) = Vi (t, ) where V; is the first component of
the functionV (s, z) defined by (5).

The second approach to construct a probabilistic representation is based on
the Pardoux-Peng BSDE theory. Within the framework of this theory we rewrite
(2) in the form

% + %Au + U (2,V?u) =0, u(T,z)=h(z),(t,z)€[0,T] x (0,00) (7)
where ¥ (z,T') = ®(z, V?u) — $Au and A is the Laplace operator. Let u be a
classical solution of (2). Consider a process £(t) = = + w(t) — w(s) and couple
of stochastic processes y(t) = u(t,£(¢)) and z(t) = Vu(t, £(t)). Applying the Ito
formula to a smooth function v and a process £(¢) and keeping in mind (7) we
obtain a system

dy(t) = —¥(£(), T'(t))dt = (2(1), dw(t)), y(T) = h(&(T)), (8)
dz(t) = a(t)dt + T(t)dw(t). 9)

Here I'(t,z) = V2u(t,£(t)) € R4 and a(t) = Viu(t,£(t)) + $Au(t, £(1))] €
R?. Note, that by definition y(s) = u(s, z).

Theorem 2. Let u be a classical solution of (2). Then it admits a representation
u(s,z) = y(s) where y(s) satisfies the system (8), (9).

Thus we have reduced the problem (2) either to (4)-(6) or to (8),(9). Note
that one can apply the above representations of u to construct its numerical
approximation.

The work is supported by grant RSF 22-21-00016.
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Solution of a non-local boundary value problem simulating
plasma perturbation by an electric field
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We consider a non-local boundary value problem for the Vlasov—-Maxwell
system of equations. The equations describe collective phenomena emerging
in the plasma layer that occur under an influence of external electric field. The
desired functions are the perturbation of the electron density function and the
intensity of the self-consistent electric field. In the Vlasov kinetic equation, the
collision integral is represented in the Bhatnagar-Gross—Krook form, see [2]. We
use the Maxwell or Fermi-Dirac distribution function as an unperturbed one,
depending on the properties of the medium. Similar problems have been studied
in a number of papers, see, for example, [5],[3]. Under the assumption of small
values of the external field, the initial statement reduces to the following system
of integral-differential equations [6]:

ofa() + afw) = o)+ [ KO W
w() =5 [ RO f (. €)de, @)

where the unknown functions f(z,v) and g(x) express the perturbations of the
initial distribution of the electrons and the electric field intensity in plasma,
respectively; the phase variables (z, v), which have the sense of dimensionless
coordinates and velocities, belong to the strip Il = {z € (—I,1),v € (—o0, +00)}.
The complex parameter « and real parameter /3 characterize the properties of
plasma and the applied external field, while the even real-valued function k(¢), is

expressed in terms of unperturbed electron density function and k(§) satisfies
o0

the normalization condition / k(&)d¢ = 1. For example, if the distribution of

— 00
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electrons in the absence of an external field obeys the Fermi-Dirac statistics, then
k(&) has the form

B = ) 0<u>:=(/mdf)_1,

T lqeSn Lo L+ Bk
where 1 is the dimensionless chemical potential.

In the talk, a new representation is constructed for the general solution of
the system of equations (1), (2) in the form of an integral with some density
1 (). Taking into account the boundary conditions (3) reduces the finding of
the function ¢(\) to solving a singular integral equation with the Cauchy kernel
on the real axis A € (—o0,+00). We use the method [4], [7] to construct the
solution of this integral equation. The method is based on the reduction this
integral equation to the singular Riemann problem. The latter problem is solved
with the use of the results of [1] to solve such a problem in the case when data of
the Riemann problem are singular. A qualitative study of the dependence of the
constructed solution of the problem (1)-(3) on the parameters of the problem
determined by the properties of the plasma is carried out.
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We consider a non-local boundary value problem for the Vlasov—-Maxwell
system of equations. The equations describe collective phenomena emerging
in the plasma layer that occur under an influence of external electric field. The
desired functions are the perturbation of the electron density function and the
intensity of the self-consistent electric field. In the Vlasov kinetic equation, the
collision integral is represented in the Bhatnagar-Gross—Krook form, see [2]. We
use the Maxwell or Fermi-Dirac distribution function as an unperturbed one,
depending on the properties of the medium. Similar problems have been studied
in a number of papers, see, for example, [3]. Under the assumption of small
values of the external field, the initial statement reduces to the following system
of integral-differential equations [5]:

ofa() + afw) = o)+ [ KO W
w() =5 [ RO f (. €)de, @)

where the unknown functions f(z,v) and g(x) express the perturbations of the
initial distribution of the electrons and the electric field intensity in plasma,
respectively; the phase variables (z, v), which have the sense of dimensionless
coordinates and velocities, belong to the strip Il = {z € (—I,1),v € (—o0, +00)}.
The complex parameter « and real parameter /3 characterize the properties of
plasma and the applied external field, while the even real-valued function k(¢), is

expressed in terms of unperturbed electron density function and k(§) satisfies
o0

the normalization condition / k(&)d¢ = 1. For example, if the distribution of

— 00
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electrons in the absence of an external field obeys the Fermi-Dirac statistics, then
k(&) has the form

B = ) 0<u>:=(/mdf)_1,

T lqeSn Lo L+ Bk
where 1 is the dimensionless chemical potential.

In the talk, a new representation is constructed for the general solution of
the system of equations (1), (2) in the form of an integral with some density
1 (). Taking into account the boundary conditions (3) reduces the finding of
the function ¢(\) to solving a singular integral equation with the Cauchy kernel
on the real axis A € (—o0,+00). We use the method [4], [6] to construct the
solution of this integral equation. The method is based on the reduction this
integral equation to the singular Riemann problem. The latter problem is solved
with the use of the results of [1] to solve such a problem in the case when data of
the Riemann problem are singular. A qualitative study of the dependence of the
constructed solution of the problem (1)-(3) on the parameters of the problem
determined by the properties of the plasma is carried out.
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Due to the inevitable perturbations, ranging from various kinds of errors (in
particular, rounding off in computer simulations) to incomplete descriptions
of the processes under study, one can observe only approximate realizations
of the processes. Therefore, one of the main problems is to answer how the
observed trajectories’, to which we refer as pseudo-trajectories, are connected to
the trajectories of the genuine system. One of the possibilities is to find conditions
under which there is a real trajectory of the process under study in the vicinity of
the obtained realization over the longest possible time interval.

This question becomes especially nontrivial in the case non-autonomous
systems, when the system itself changes its behavior over time. At present, there
are practically no results in the literature in this direction, and this article fills this
gap by proposing a relatively simple test for solving the shadowing problem.

At the level of connections between individual trajectories of a hyperbolic
system and the corresponding pseudo-trajectories this property (called the shad-
owing property) was first posed by D. V. Anosov as a key step of the analysis of
structural stability of diffeomorphisms. A similar but much less intuitive approach
called “specification” in the same setting was proposed by R. Bowen. Informally,
both approaches ensure that errors do not accumulate during the process of mod-
eling. In the systems with the shadowing property each approximate trajectory
can be uniformly traced by a true trajectory on the arbitrary long period of time.

Naturally, this is of great importance in chaotic systems, where even an ar-
bitrary small error in the starting position lead to (exponentially in time) large
divergence of trajectories.

Further development demonstrated that under very mild assumptions for a
diffeomorphism the shadowing property implies the uniform hyperbolicity. To
some extent, this limits the theory of uniform shadowing to an important but very
special class of hyperbolic dynamical systems. The concept of average shadowing

! Approximate trajectories of a system under small perturbations

36


mailto:blank@iitp.ru

introduced in [1] about 30 years ago gave a possibility to extend significantly
the range of perturbations under consideration in the theory of shadowing, in
particular to be able to deal with perturbations which are small only on average
but not uniformly.

To realize this idea we developed recently in [2] a fundamentally new con-
struction, consisting in the effective approximation of pseudo-trajectories of
autonomous dynamical systems with only a single in time perturbation of the
dynamics. The main result is that this single perturbation approximation property
with some control of the approximation accuracy implies the shadowing property.
In the present talk we extend this approach for non-autonomous systems.
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Szeg6-Weinberger type inequalities for symmetric domains
with holes

Bobkov V.
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Let uo(92) be the first positive eigenvalue of the Neumann Laplacian in a
bounded domain Q@ C RY. It was proved by Szegé [2] for N = 2 and by
Weinberger [3] for N > 2 that us(Q) attains its global maximum among all
equimeasurable domains if (2 is a ball. We develop the approach of Weinberger in
two directions. Firstly, we refine the Szegé-Weinberger result for a class of domains
of the form Qqy \ Qin which are either centrally symmetric or symmetric of order
2 (with respect to any coordinate plane (x;, ;)) by showing that o (Qout \ Qi) <
u2(Bg\Ba), where B, B are balls centered at the origin such that B,, C (i, and
|Q0ut \ Qin| = | Bs \ Bal. Secondly, we provide Szegd-Weinberger type inequalities
for higher eigenvalues by imposing additional symmetry assumptions on the
domain. In particular, if Qqy \ Qi is symmetric of order 4, then we prove that
wi(Qour \ Qi) < pi(Bg \ By) fori = 3,..., N + 2, where we also allow (i, and
B, to be empty. The talk is based on the work [1].

References

1. Anoop TV, Bobkov V,, Drdabek P Szego-Weinberger Type Inequalities for Symmetric
Domains with Holes // SIAM Journal on Mathematical Analysis. — 2022. — Vol. 54,
no. 1. — P. 389-422.

2.  Szegd G.Inequalities for Certain Eigenvalues of a Membrane of Given Area // Indiana
University Mathematics Journal. — 1954. — Vol. 3. — P. 343-356.

3. Weinberger H. E An Isoperimetric Inequality for the N-Dimensional Free Membrane
Problem // Indiana University Mathematics Journal. — 1956. —Vol. 5. — P. 633-636.

38


mailto:bobkov@matem.anrb.ru
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Orbifolds can be considered as manifolds with singularities. An n-dimensional
orbifold is a connected Hausdorff topological space that can be represented
locally as a quotient space R" /T of the arithmetic space R™ over a finite group
of diffeomorphisms I'; moreover, the group I is not fixed and can change when
moving from one point to another. Smooth orbifolds naturally form the category
Orb.

Lorentz geometry differs significantly from Riemannian geometry. It is known
that every smooth orbifold admits a Riemannian metric which is not true for
Lorentz metrics. Loretzian orbifolds form the category Lor.

The isometry group of a Lorentz orbifold (A, g) is called inessential if there
exists a Riemannian metric h such that the isometry group of the Lorentzian
orbifold (V, g) coincides with the isometry group of the Riemannian orbifold
(N, h). Lorentz orbifolds with inessential full isometry group are referred to be
inessential. Otherwise a Lorentz orbifold (N, g) is said to be essential. Emphasize
that an essential Lorentz orbifold (N, g) is characterized by an improper action
of its full isometry group. A compact Lorentz orbifold is essential if and only if its
full isometry Lie group is not compact.

In [2] proved that unique compact smooth orbifold “Pillow” admits a complete
essential Lorentz metric of zero curvature and all such metric were founded.
Among non-compact orbifolds only Z,-cone admits a complete essential Lorentz
metric of zero curvature [1].

In this work we investigate the structure of complete two-dimensional Lorentz
orbifolds of constant non-zero curvature with the essential isometry group. At
first we prove that every such orbifold may be represented in the form A /¥ where
M is a Lorentz manifold, and ¥ is an isometry group isomorphic either to Z, or
to Zo X Zo. Further we classify two-dimensional essential Lorentz manifolds and
apply this classification.
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Thus we obtain the classifications of complete two-dimensional essential
Lorentz orbifolds of constant non-zero curvature both in the category of smooth
orbifolds Orb and in the category of Lorentz orbifolds Lor. These classifications
are richer than in the case of zero curvature. In particular, we have proved the
existence of three smooth orbifolds with finite fundamental groups admitting
essential Lorentzian metrics, while in the case of zero curvature there is only one
such orbifold.

The work was supported by the Russian Science Foundation (grant no. 23-71-
30008).
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Nonlinear wave in the hypercycle with infinity many members

Alexander Bratus

Russian University of Transport

An important class of replicator models involves systems of nonlinear ordinary
differential equations with dynamics restrained by the standard simplex in the
state space and describes macromolecular interactions in various problems of
population genetics and evolutionary game theory [2], as well as in theories of
the origin of life [4]. Of special interest is the hypercycle model that was proposed
by M. Eigen and P. Shuster classical hypercycle is a finite closed network of self-
replicating macromolecules (species) which are connected so that each of them
catalyzes the replication of the successor, with the last molecule reinforcing the
first one. From the sociological perspective, the catalytic support for the replica-
tion of other molecules resembles altruistic behavior, in contrast to conventional
autocatalysis. However, the actual number of macromolecules in a hypercycle
may be huge, and this may significantly complicate the numerical analysis of
the associated dynamical system. It may therefore be reasonable to represent
the macromolecules as points in some line segment (of cardinality continuum)
and to construct an appropriate distributed model of hypercyclic replication.
Such a methodology was previously implemented for Crow—Kimura and Eigen
quasispecies models, with a single integra-differential equation replacing a large
number of ordinary differential equations [1; 4]. Since the model represents
an idealized process of replication continuous species in the form of integra-
differential equation with space delay in integral simplex. The existence and
uniqueness of positive solution are proved. The solutions represent sequence of
non-damped nonlinear wave. It is proved existence of Andronov-Hopf bifurcation
in steady state position [3]. The results of numerical modelling are presented.
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On symmetries and conservation laws for some differential
equations
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Consider the following operator equation:
N(U) = PQu,tutt + Plu,tut + PBu,tu% + Q(tv u) = Oa (1)

u€ D(N)CUCYV, teltyt1] CR,
d2

uy = Dyu = ﬁu, Ut = @u

Here Vt € [to,t1], Yu € U, operators Py, : Uy — Vi (i = 1,3) are linear;
Q : [to, t1] x Uy — Vi is an arbitrary operator, in general, nonlinear; D(N) is the
domain of the operator N, U = C?%([to,t1];U1), V = C([to, t1]; V1), U1, V1 are

real linear normed spaces, U; C V.

The operator equation (1) can be an ordinary differential equation, a partial

differential equation, an integro-differential equation, a differential-difference
equation, etc., and for P3,, = 0 - a system of such equations.

The following results are obtained.

. Necessary and sufficient conditions for the representability of the equation (1)
in the form of Lagrange equation are obtained.

. The corresponding Hamiltonian action is constructed.

. Conditions for the existence of symmetries of the given equation and the
constructed functional are obtained.

. The formulas for finding integrals of the considered equation are obtained.

. The connection between variational symmetries and symmetries of the given
equation and Lie-admissible algebras (including Lie algebras) is established.
The theoretical results are illustrated by some examples.

This talk is based on works[1-7].

This publication has been supported by the RUDN University named after

Patrice Lumumba, project 002092-0-000.

43


mailto:budochkina-sa@rudn.ru

References

Budochkina S. A. On connection between variational symmetries and algebraic
structures // Ufa Mathematical Journal. — 2021. —Vol. 13, no. 1. — P. 46-55.

Budochkina S. A. Symmetries and first integrals of a second order evolutionary
operator equation // Eurasian Mathematical Journal. — 2012. — Vol. 3, no. 1. —
P 18-28.

Budochkina S. A., Savchin V. M. Variational symmetries of Euler and non-Euler
functionals // Differential Equations. — 2011. — Vol. 47, no. 6. — P. 814-821.

Budochkina S. A., Vu H. P On an indirect representation of evolutionary equations
in the form of Birkhoff’s equations // Eurasian Mathematical Journal. — 2022. —
Vol. 13, no. 3. — P. 23-32.

Savchin V. M., Budochkina S. A. Invariance of functionals and related Euler-Lagrange
equations // Russian Mathematics. — 2017. —Vol. 61, no. 2. — P. 49-54.

Savchin V. M., Budochkina S. A. Lie-admissible algebras associated with dynamical
systems // Siberian Mathematical Journal. — 2019. — Vol. 60, no. 3. — P. 508-515.

Savchin V. M., Budochkina S. A. On connection between symmetries of functionals
and equations // Doklady Mathematics. — 2014. —Vol. 90, no. 2. — P. 626-627.

44
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Levinson-Smith differential systems
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We consider the following family of planar differential systems:

e =Y, Y= —f(.]?, xt)xt - g(a:), (1)

where the functions f(x, 2;) are g(z) polynomials of their arguments. Systems
of the form (1) model nonlinear oscillators with the damping and the restoring
force given by f(x, z;) and g(z), respectively. These systems are called Liénard
systems whenever f(z, x;) is independent of 2; and Levinson-Smith systems in
the general case.

The aim of the present talk is to describe the integrability properties [1; 2] of
systems (1). We use the theory of invariants and the Darboux theory of integrability.
The Darboux theory of integrability provides a collection of methods designed for
finding the Darboux and Liouvillian first integrals of planar differential systems
[3]. These methods are based on the number and properties of algebraic and
exponential invariants of differential systems. A great advantage of the Darboux
theory of integrability is that this theory can give the necessary and sufficient
conditions of integrability for multi-parameter differential systems. The main
difficulty in deriving algebraic invariants lies in the fact that their degrees are not
known in advance. We shall describe a method that makes finding the invariants
purely algebraic [1; 2].

The research reported in this talk is supported by the Russian Science Foun-
dation grant 19-71-10003, https://rscf.ru/en/project/19-71-10003/
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We discuss a method for constructing semi-classical asymptotic solutions of mul-
tidimensional stationary linear inhomogeneous partial differential (and pseudo-
differential) equations with localized right-hand sides. These problems are close
to the problems on the asymptotics of the Green function for the corresponding
operators, in particular, the problems on the asymptotics of the Green function for
the Helmholtz equation studied in numerous papers and arise in various fields of
physics. The method is based on ideas dating back to V. P. Maslov, V. V. Kucherenko,
R. Melrose, G. A. Uhlmann, and allows us to describe asymptotic solutions using
constructively defined families of trajectories in the form of WKB functions or
the canonical Maslov operator and special functions in the presence of caustics
and focal points. The asymptotics contain information about the shape of the
wave-generating source. The method is illustrated by various physical examples.

The results were obtained jointly with A. Yu. Anikin, M. Rouleux and
A. A. Tolchennikov and supported by the Russian Science Foundation (project
21-11-00341).

47


mailto:s.dobrokhotov@gmail.com
mailto:nazaikinskii@googlemail.com

Nonlocal de Sitter Gravity and its Exact Cosmological Solutions

Dragovich B.
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We will present several exact vacuum cosmological solutions of a simple
nonlocal de Sitter gravity model. One of these solutions mimics effects that
are usually assigned to dark matter and dark energy. Some other solutions are
examples of the nonsingular bounce ones in flat, closed and open universe. There
are also singular and cyclic solutions. All these cosmological solutions are a result
of nonlocality and do not exist in the local de Sitter case. This talk is based on the
paper: JHEP 12 (2022) 054.
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On the singular trace of the main operations of field theory and
the corresponding boundary value problems

Dubinskii Yu. A.
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The report is devoted to the formation and study of boundary value problems,
the boundary conditions of which contain the basic operations of the field theory
of the first order, namely the vector of normal derivatives, curl and divergence.

The formation of the problems is based on the theorem on the trace of a linear
combination

Dru = gu _ [rotu, n] — divu - n (1)

on

on the boundary of the domain G C R3 forarbitrary vector fieldsu = (uy,u2,us3) €
W3 (G). Trace of the specified combination on the boundary I" of domain G is a

. . 1/2 .
continuous functional over space WQ/ (T),i.e.

Dru = <3u — [rotu, n| — divu - n) € Wz_l/Q(F)'
on r

This functional is a deviator (difference operator) of bilinear forms correspond-
ing to the Laplace operator, presented in two forms —A = —divV and rot? — Vdiv.
Exactly

(Dru,v) :/(Vu,Vv)d:c—/(rotu,rotv)dx—/ divu - divede,
G G G

where u € W} (G) and v € W3 (G) are arbitrary fields.
In particular, if u € Ker Dru (and even more so if Dru = 0), then

HVUH%Q(G) = HIOWH%Q(G) + ||diVU||2L2(G)- (*)

A number of field implications are associated with the functional Dpu:
l.ulp =0= Dru=0= (%),
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2. {(u|p,n) = 0& (%\r)mng
3. {[ulr,n] = 0& (%h)norm —divulr -n =0} = Dru= 0= (x).
We also note the unconditional connection between the boundary values of

the gradient and the curl of vector fields

— [rotu, nr = o} = Dru=0= (),

/F ([Vp,n],u)dy = /F (rotu,n) - pdy

where p = p(z) is a scalar field.
The report will also indicate the conditions on vector fields, under which not

only Dru € W;UQ(I‘), but also each term in (1), i.e.

%h e W, A1), [rotulp,n] € W, Y*(T), divulr - n € Wy /(D).
The presence of these traces allows us to form a number of non-standard

boundary value problems, examples of which are the following problems:

1) rot?u — Vdivu = h(z),x € G,

—([rotu - n] + divu - n)r + Dru = f(y),y €T

(field version of the Neumann problem);

2) to find a vector function u € W3 (G) and a number « € R such that

—Au = h(z),z € G,

<DF¢’,U|1"> = 0, %h" = OJDF(I)

(the problem on the kernel of the functional , where a “weight” function is given).
The detailed presentation is available in [1-3].

The work was supported by The Ministry of Science and Higher Education of
the Russian Federation (project FSWF-2023-0012).
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Theorem on Number-theory Renormalization of vacuum energy
in QFT on the lattice

Dudchenko V. A.
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We consider a bosonic QFT on a lattice Z?(N') with the Hamiltonian

Hy= Y E@) (25;89 + 1) o [bprs 0,1 = Gpupe 1,
pEZ4(N),p2€D

d
p’=> pi €Z(N), E:D—ZLN), DCZLN).
k=1

The bosonic vacuum energy is the sum of the zero oscillation energies for all
permissible values of the momentum

E=Ewmcv= »_, E@)= > cna(k)E(k)€Z(N).

pEZ4(N),p2€D k€EDCZ(N)

Here the multiplicity cy 4 (k) is

d
eval(k) = (the number of nodes p € Z¢(N) such that ZpQ =k (mod N))

(1)

n=1
Theorem. For an arbitrary N with d > 3, and for N = 2" withd > 2
Vk € Z(N) c¢nya(k)=0 (mod N). 2

When the conditions of the Theorem are fulfilled for an arbitrary function
E : D — Z(N) the vacuum energy calculated in the ring of residue classes Z(N)
is zero.
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The main idea of the proof. We define the polynomial of 7

@)=Y enalk)r 3)

kEZ(N)

as a generating function for multiplicities cyq(k) of E(k) on the lattice Z¢(N).
For one-dimensional generating function we skip the upper index d = 1, i.e.

In(r) € ().

We treat 7 as a formal variable with the equivalence relation: 7V = 1, i.e. the
powers of 7 in (3) can be considered as elements of Z( V). The multiplication with
such relation we denote as f o g. In reduction of similar terms so that 7+ = 7%,
hence in case d > 1 the generating function can be represented as a d times

product of one-dimensional generating functions:

d
F4(7) = v oo fr(r) = (Fn ()" @
We define the polynomial ¢y (7) with coefficients all equal to 1:
¢n(r)= D th=l+r47 44N (5)
kEZ(N)

Here ¢ (1) # 11_ fTN because due to (23) the value 1 of variable 7 is possible value.

Next we introduce the polynomial g, (7) using Legendre symbol [2] as charac-
ter x(k):

gp(m) = D x(k)-7*. (6)

kEZ(p)

For N = p prime odd number we have generating function in 3-dimensional
case

p—1

fz?(T):fpofpofp:p2'¢p(7)+p'(_1)T'917(7')- (7)

In the expression above one can take the common factor p out of brackets. So
each coefficient in polynomial above is divisible by p

¢p3(k) =0 (modp). (8)

And for d > 3 we have ¢, 4(k) = 0 (mod p) is obvious due to factorization (4).
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For N = p™ in 3-dimensional case we have recurrent formula as

p-g,(P" ) ifoddm,

m O m O m = 2'@7110 3m7 + m+L%J_1,
fomedpmely pr By o fymos 4P p—P@pm(r) ifevenm,

where ®,,(7) is cyclotomic polynomial [1]. Due to (8) and (9) we have

cpm3(k) =0 (modp™).
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Derivation of the Transport Equation for the Harmonic Crystal
Coupled to a Klein-Gordon Field

Dudnikova T. V.
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tdudnikov@ mail.ru

The rigorous derivation of macroscopic evolution equations from the mi-
croscopic dynamics is one of the central problem of nonequilibrium statistical
physics. In the talk, we discuss this problem for the Hamiltonian system consisting
of a real scalar Klein-Gordon field 1() and its momentum 7 (z), » € R?, coupled
to a harmonic crystal described by the deviations u(k) € R™ of particles (atoms,
molecules, ions, etc) from their equilibrium position and their velocities v (k) €
R, k € 79, d,n > 1. The Hamiltonian functional of the coupled field—crystal

system reads

H(,u, 7,v) := %/(|V¢($)|2 + mi|p(x)]? + |7T(3;‘)|2) dx
+% > ( > k) - V(k = K)u(k') + |v(k)\2)

kezd k'eZd

+> /R(:c — k) - u(k)(x) de,

kezd

where the coupled function R(z) is a R”-valued smooth function exponentially
decaying at infinity. This system can be considered as the description of the
motion of Bloch electrons in the periodic medium which is generated by the
ionic cores. The derivation of the transport equation is connected with the
problem of convergence to an equilibrium measure. Hence, the first step in
our investigation is the proof of such convergence. We assume that the initial
data is a random function on a phase space with a distribution . We impose the
following conditions on the measure p: 110 has a zero mean, it has a finite mean
energy density, and it satisfies the mixing condition. We study the distribution
1 of arandom solution at time moments ¢t € R and prove that the measures
weakly converge to a limit Gaussian measure as t — oo (see [1]).
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To derive the transport equation we introduce a small scale parameter £ >
0 and consider a family of the initial measures {15, > 0} satisfying some
conditions. In particular, we assume that the measures pg are locally spatially
homogeneous (w.r.t. the translations in Z?) or “slowly vary” under order shifts
less than £ !, and inhomogeneous under shifts of the order e ~!. Given nonzero
7 € Rand z € RY, we study the distribution e Jen x)e of the random solution
close to the spatial point [z/¢] and at time moments 7/¢" withan s, x € (0, 1]. In
the case x < 1, we prove that the measures 2 Jer, /e CONVEIgE to a limit measure
as ¢ — 0, which is Gaussian and its covariance matrix does not depend on 7. For

_ . £ _ G G . . .
k=1, ggn% 13 /e.2e = B7.. Where pi77 is a Gaussian measure. In particular, we

derive the explicit formulas for the covariance matrix of the limit measure. These
formulas allow us to conclude that in the Bloch-Floquet-Zak transform the limit
covariance matrix evolves according to the following equation:

010 = icOvR0) V.0, co=( g, )

where z € R%, 7 > 0, 6 € [0, 27]%, and, roughly, Q(6) is the “dispersion relation”
of our model. Eqn (1) can be considered as the analog of the Euler equation.

In phonon physics it is standard practice to use the Wigner function W (¢, z, 6)
as density of phonons with wave number 6 at location z and at specified time ¢.
W evolves according to the semiclassical energy transport equation

W (t,2,0) = —VQO) - V.W(t,2,0), zcRI¥ t>0. 2)

We show that W (¢, z,0)§(0 — ¢’) at fixed z, t are expressed by the covariance
of the limit Gaussian measure ;{",, which is invariant under the dynamics of the
problem. Thus, Eqn (2) can be understood as the equation governing the motion
of the parameters which characterize the locally stationary measures. For the
harmonic crystals, the transport equation (2) was derived in [2; 3].
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Functional of eigenvalues on the manifold of potentials
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We consider the family
—y" +p@)y = Ay; y(0) —y(2m) =y'(0) —y'(2m) = 0 (1)

ofp e P:={L5(0,27) : ()Zﬂp(ac)dx = 0} as a functional parameter. For a fixed
potential p € P the spectrum consists of real eigenvalues with multiplicity at
most two: A\o(p) < A7 (p) < AT (p) < ... < A, (p) < Af(p) < ...Fixasubscript
n € N andletY,, be the set of eigenfunctions corresponding to eigenvalues with
subscript n:

2
Y, = {y € Wi(2n): / yidr =1 A I(p,\T) € P x R: (1) is true}.
0

We are interested in submanyfold of potentials for which the nth lacuna has the
same length, P,,(A)\) :={p € P: Al (p) =\, (p) = AN >0} C P.

Using formulas
y// :ZJ) 1 2
r(y;r) == (y€Yn), ANy) = —— r(y;z)dz, p(y; x) = r(y; 2)+A(y),
y() 2 Jo

we study the properties of the eigenvalue functional A = A(p). It will be shown
that on the manifold P, (0), the functional \(p) is a Morse functional with one
critical point, and its Morse index is 2(2n — 1).
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Ramified continua as global attractors of C'-smooth self-maps
of a cylinder close to skew products

EfremovaL. S.
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In the current time the theory of dynamical systems on complicated continua,
in particular, on ramified continua, is intensively developing. There are dynamical
systems (in particular, ordinary differential equations) that admit continua with a
complicated topological structure as their attractors. For example, Plykin attractor
is an indecomposable continuum. Indecomposable continua also arise in the
study of inverse limits of maps with homoclinic tangencies. Dendrites appear
not only in considerations of inverse limits of maps with attractors of Hénon and
Lozi types, but also in investigations of limit sets of some Kleinian groups on
hyperbolic 3-manifolds.

We consider a C'-smooth self-map F of a cylinder M = S! x I, where S* is
a circle, I, is a compact interval of the real line, satisfying

F(z, y) = (f(z) + p(z, y), 9:(y)), where g.(y) = g(z, y), (z,y) € M.

We study such geometric property of the maps, as existence of C'*-smooth
invariant local lamination, and apply this geometric property to the proof of the
geometric integrability of maps under consideration. Using obtained results we
construct the example of the family of C'*-smooth maps close to skew products
so that each map from this family admits the global attractor, which is a one-
dimensional ramified continuum with a complicated topological structure. The
global attractor of every map from the family under consideration consists of arcs
of two types. On the unique circle S' x {0} (which is the arc of first type) the
map is mixing; on arcs of second type of different lengths homeomorphic to a
closed interval (the family of such arcs has continuum cardinality) the map is not
mixing. The topological structure of the global attractor and dynamical properties
of trajectories on the attractor lead to the property of dense intermittency (in the
complement to the attractor) of attraction sets of different w-limit sets, the union
of which coincides with the global attractor.
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On w-limit sets of simplest skew products defined on
n-dimensional cells
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We consider here a continuous skew product F with the phase space

Im = H I; (I; are closed intervals for all 1 < j < n), i.e., a continuous map
i=1
of the type

F(l’l, o, .. ZL’n) = (f1($1))7f2(1'1, $2), .. .,fn(fL'l, Loy «vny {En)) (1)

We say that a continuous map (1) is simplest, if it has a bounded set 7(F’) of
(least) periods of its periodic points. It means that there is a nonnegative integer
number v so that 7(F) = {2¢}i=¥ (see [3]). Set M = 2V.

We describe the structure of w-limit sets of continuous simplest skew products
on n-dimensional cells (n > 2). Our results generalize results of the paper [1]
obtained for skew products defined on a closed plane rectangle.

Theorem 1. Let F' be a continuous simplest map of type (1) with the phase
space I"™ (n > 2). Then for every point x(Z,,_1, x,,) € I" (here
Zp—1 = (x1, ®2,...,2,_1)) there are a periodic point x‘f ofamap f1, and closed
intervals I, C I, ..., I, C I, (possibly, degenerate) such that the w-limit set
wpm ((Tn—1, Tn)) of the FM -trajectory { FM*(Z,,_1, ,,) }i>0 of the point
2(Zp—1, ) has the form

wpst (Tn-1, 2a)) = {29} x [] ). (2)
j=2

Moreover, wpy ((Z,,_1, x,,)) consists of FM -fixed points (compare with [2]).
Denote by Per(-) the set of periodic points of a map and introduce the follow-
ing concept.
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Definition 1. Let F' : I™ — I" be a continuous simplest skew product.
A point 2§ € Per(f;) is said to be an exceptional periodic point of the map
f1, if there are natural numbers 2 < j1 < joa < ... < js < nand points
29(29, 29) € Per(fa),.. 9, _1(95(1’, a9, ..., 29 ) € Perf; _, such that for
everyl < k < sthe shce (Per( f] »)) (79, _,) contains a nondegenerate closed
interval. Here

f]k ((El, .. (Ejk) = (fl(l'l), fQ(SL'l, (EQ), Ceey fjk (!I?l, ey :Ejk)); the slice
(Per(fjk )) (29, _,) is the set that coincides with

{j, 1 @2y, 2;,) € Per(f;,)}.

Definition 1 is correct by the properties of natural projections of periodic
points sets of skew products on n-dimensional cells (n > 2).

As a direct corollary of Theorem 1 and Definition 1 we obtain the following
claim.

Proposition 1. Let F' be a continuous simplest map of type (1) with the phase
spaceI™ (n > 2), and let f, have no exceptional periodic points. Then the w-limit
set of F'-trajectory of every point of I" is a periodic orbit.

For the study of simplest skew products with a nonempty set of exceptional
periodic points of f; divergent series are used.

In formula (1) we set f; z,_,(x;) = fi(Ti—1, ;) for2 <i < n.

Theorem 2. Let F' be a continuous simplest map of type (1) with the phase
spaceI™ (n > 2). The following claims are equivalent for a point (Z,,_1, x,,) € I"™:

(2.1) equality (2) holds for some 29 € Per(f;) and nondegenerate close
intervalsI;,, I;,, ..., I; ,where2 < j; < ... < js <m;

(2.2) forevery1 < k < s the series

+oo
Z @fjk—l,MT(mjk)
r=1

is alternating divergent, where
Pz, 1, Mr(T5,) = fin, 25 0 Me+1) @5) = Fi, 75, 0,m0 (T5),
fjke"-fjkflvp(x]’k) = fj °© fjkv-'?jk—l(xjk)? p=>2.

Sp—1 s~ (@]
k-,jfkfl(zjk—l)
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A Journey into Global Stability: From Monotone to Mixed
Monotone and from autonomous to nonautonomous

Saber Elaydi
Department of Mathematics, Trinity University, USA

selaydi@trinity.edu

The study of global stability of fixed and periodic points of monotone maps and
triangular maps in one or higher dimensional spaces have been successful. For
general maps, the use of Liapunov functions have had limited success. Recently,
Liapunov functions have been successful in obtaining global stability of the
disease -free equilibrium of epidemic models.

In this talk, we extend some of these results to mixed monotone maps. A
special property of these maps is that they can be embedded in symmetric
monotone maps in higher dimension spaces. The aim here is to investigate
the global stability of the interior fixed points of mixed monotone autonomous
systems.

The study is then extended to non-autonomous systems that are asymptoti-
cally autonomous, and to periodic difference equations. For the periodic systems,
we show that a periodic cycle is globally asymptotically stable.

These results are then applied to single and multi-species evolutionary com-
petition models such as the Ricker model and the Leslie-Gower model with one
trait or multi-traits.
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On measurement-assisted control in a three-level quantum
system with dynamical symmetry
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In this talk we consider three-level system with dynamical symmetry: it
has conserved quantity under coherent evolution which bounds the transition
probability between different eigen states of the free Hamiltonian by % However,
one could break this symmetry by using incoherent control, i. e. measurement.
In [1] it was shown that with the following evolution

P (T2) = Uf2MPw (Uflp(iTl) U;l) U.Tz'

one could achieve transition probability of approximately 0.678. In this talk, we
study kinematic control landscape of the transition probability functional and
show that it has the following types of critical points: global maxima, global
minima, saddles, second order traps [2].

References
1. Control of quantum dynamics by optimized measurements / E Shuang [et al.] //
Phys. Rev. A. — 2008. —Vol. 78, no. 063422.

2. Elovenkova M., Pechen A. Control landscape of measurement-assisted transition
probability for a three-level quantum system with dynamical symmetry (submit-
ted). —.

66


mailto:apechen@gmail.com

Direct and inverse problems for odd-order quasilinear
evolution equations

Faminskii A. V.
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Ontheinterval I = (0, R) for certain R > 0 aninitial-boundary value problem
for an equation

-1
up — (=112 u + andZ'u) = Y (=1) 0] [azjr (8, 2)0H u + az(t, ) u]

<
I
o

+Z DR [ge(t, z,u, ..., 05 )] = f(t,z)
for certain natural / with initial and boundary conditions
u(0,2) =up(x), x€]0,R],

du(t,0) = dut,R)=0,j=0,...,01—1, 0'u(t,R)=v(t), t>0

)

is considered.

The class of such equations includes the Korteweg-de Vries (KdV) and the
Korteweg—de Vries-Burgers equations with their generalizations for higher-order
nonlinearity, in particular, the modified KdV equation (mKdV) in the case | = 1,
the Kawahara, the Benney-Lin equation (also with their generalizations for higher-
order nonlinearity), the Kaup-Kupershmidt equation, the third equation of the
KdV hierarchy, the second equation of the mKdV hierarchy in the case ! = 2 and
SO on.

Weak solutions of these problem are constructed in a class

X(Qr) = C([0,T7; La(1)) N La(0,T; H{(1)),

where Qr = (0,T) x [ for an arbitrary 7" > 0.
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The functions a; are subjected to certain sign and size restrictions (in particular,
ag; < 0), the functions g, — to growth restrictions.

Then for small ug € Lo(I), v € Ly(0,T) and f € L2(Qr) the result on
existence and uniqueness of weak solutions is established.

Moreover, large-time exponential decay of these solutions in the norm Ly (1)
is also investigated.

Besides this direct problem inverse problems with integral overdetermination

R
/0 u(t, z)w(x)de = ¢(t), tel0,T],

for certain given functions w and ¢ are also studied. We consider two types of
inverse problems: in the first one the function f is presented in a form

f(t,z) = F(t)g(t, ),

where the function g is given and the function F' is unknown; in the second one
the function v is unknown. The aim is to find the function F' in the first case and
the function v in the second case, such that the corresponding weak solution of
the initial-boundary value problem satisfies this additional condition.

From the function w we always need that

we HHYD), wD0)=0,i=0,...,l, wP(R)=0,i=0,...,1—1.

In the firstinverse problem itis also assumed that the function g € C([0,T]; L2(I))
verifies the condition

R
/ g(t,x)w(x)de #0 VYt € [0,T],
0
in the second problem — that w(") (R) # 0. In all cases the compatibility condition

R
<p(0)=/0 uo(z)w(x) dx

is also needed.

Under the smallness assumptions on ug € Lo(I), p € Wi (0,T) as well as on
v € L(0,T) in the first problem and f € Lo(Qr) in the second one, the results
on existence and uniqueness of the solutions v € X (Qr) and F € L;(0,7T) in
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the first case, v € L1 (0,7T) on the second case are obtained.

The work has been supported by Russian Science Foundation grant 23-21-
00101.
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On projections of a compact set in R
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We apply ideas of geometric measure theory and Baire category theory to
topological problems, namely, to topological embeddings of compact sets into
Euclidean space.

In 1947, Borsuk constructed a Cantor setin RY, N > 3, such that its projection
onto any (N — 1)-plane contains an (N — 1)-dimensional ball. This can be
strengthened: a desired Cantor set can be obtained from an arbitrary Cantor set
by an arbitrarily small isotopy of the space R” .

In the same paper, Borsuk described a knot in R3 whose orthogonal projection
onto any plane contains a 2-dimensional disk. An analysis of Borsuk’s work shows
that such a knot exists in every equivalence class of knots (both tame and wild).
Again, a knot with 2-dimensional projections can be obtained from an arbitrary
knot by an arbitrarily small isotopy of the space R™.

The question arises: how do the dimensions of the projections of a compact
set X C R" behave under a typical ambient isotopy or under a typical ambient
homeomorphism? (Typical in the sense of the Baire category.)

We solve this problem. Our main result strengthens Viisild’s theorem (1979)
connecting Hausdorff dimension and Shtan’ko embedding dimension (denoted
by “dem”). In its turn, Vdiséld’s theorem extends results of Nobeling (1931) and
Szpilrajn (1937) on relationship between Hausdorff dimension and topological
dimension.

Theorem 1. Let X C RY be a compact set, U its bounded open neighbor-
hood, £ > 0. Then for a typical homeomorphism f € Homeo. (U, OU) we have
dem X = dimg(f(X)).

Here Homeo, (U, dU) is the set of all homeomorphisms f : U =2 U such that
flgz = idand d(f,id) < ¢, where d is the standard uniform distance. (Recall
that Homeo. (U, 9U) is a Gs-subset of C(U, U) since 9U is closed in U. Hence
Homeo. (U, OU) is metrizable by a complete metric, and the notion of a typical
element has sense.)
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Using Theorem 1, we find out how the projections of a knot “typically” behave.
Recall that a typical knot in R? is wild (J. Milnor, 1964) and even wild in every
point (H.-G. Bothe, 1966).

Corollary 2. LetY C R® be an arbitrary knot, U its bounded open neigh-
borhood, ¢ > 0. Then a typical homeomorphism f € Homeo. (U, 0U) has the
property: the projection of the knot f (X)) to any 2-plane and to any line is one-
dimensional.

We will also present an isotopic version of Theorem 1 and analogues of Corol-
lary 2 for Cantor sets in R,

As a consequence, we get new criteria of tameness and wildness of a Cantor
set in terms of its projections.
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Let (X, | - ||) be any Banach space and .Z (X)) denotes the set of all bounded
linear operators on X. Next we will use the notions of strongly continuous
one-parameter semigroup (or just Co—semigroup), contractive semigroup and
generator of a strongly continuous semigroup, definitions of which can be found,
for example, in the book of Engel and Nagel [2]. In 1968 Paul Chernoff proved the
following theorem:

Theorem 1 (Chernoff [1]). Let X be a Banach space, F(t) be a strongly
continuous function from [0, 00) to the set of linear contraction operators on
X, such that F(0) = I. Suppose that the closure A of the strong derivative F'(0)
is the generator of contractive Co—semigroup {¢*4 };>. Then[F(t/n)]" converges
to e* in the strong operator topology:

Let us note that this theorem does not contain an estimate of the rate of
convergence. In 2022 was published the theorem that provides such estimate
under certain conditions:

Theorem 2 (Galkin, Remizov [3]). Suppose that:
DT >0,M; >1,w > 0. (A, D(A)) is generator of C-semigroup (e'4) ;> in a
Banach space X, such that ||e!4|| < Me*t fort € [0,T).
2) There are a mapping F': (0,T] — £(X) and constant My > 1 such that we
have ||(F(t))¥|| < Mae*v? forallt € (0,T) andallk € N = {1,2,3,...}.
3)m € NU{0}, p € N, subspace D C D(A™*P) is (e*4);>0-invariant.
4) There exist such functions K ;: (0,T] — [0,400),j =0,1,...,m+p thatforall
m tkAk:E et m+p )
a3 S | < S K (0)] Al
k=0 §=0
Then for allt > 0, all integern > t/T and all x € D we have

t € (0,T]andallx € D we have
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m—+1 wt m+p
% Z C;(t/n)||Alz|,
7=0
where Cp,11(t) = Kpi1(t)e™ " + My /(m + 1) and C;(t) = K;(t)e ™" forall
j#£Em+ 1
The mapping F': (0,7] — Z(X) is called a Chernoff function of order m
for operator A iff it satisfies the conditions of theorem 2. Let UC},(R) be the
Banach space of all uniformly continuous bounded functions f: R — R with
the norm || f|| = sup, g | f(2)|, and linear operator L = [f ~ f”] has domain
D(L) ={f e UCyR) | f" € UC,(R)}. Here we are interesting how to construct
space-shift based Chernoff function S,,, of any orderm for operator L. Previously,
the following results were known in this direction:
In 2016 Ivan Remizov [4] found Chernoff function of order 1 containing 3
summands:

I(E(t/n) e — e ol <

Lo+ if(m +ovi) + if(:v — o) = f(z) + " (@) + olb).

Si@) = 5

In 2019 Alexander Vedenin found Chernoff function of order 2 with 3 sum-
mands too:

2 )k PV @V = @)t @)+ 5 1 @)+

[S2(0)f)(x) =
+o(t?).
In general, the following theorem is true:
Theorem 3. For any natural m, there is a unique Chernoff function S,, of order
m—+1
m for the operator L = [f — f"], having the form [S,,(t) f](x) = Z i
flx +b;t%).
In this case, the following conditions will be met:
1)81 = ... = Sn+1 = 1/2,
2) the numbers by, . .., b, are different roots of the orthogonal Chebyshev—
Hermite polynomials;
3) the numbers a;, . . ., a,,+1 are the Christoffel coefficients corresponding to the
quadrature nodes by, . .., by, +1 and can be calculated by the formulas
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" — 2m+2(m + 1)/
' (Hpp g (b3))*

i=1,...,m+1.

The authors are partially supported by Laboratory of Dynamical Systems and
Applications NRU HSE, grant of the Ministry of science and higher education of
the RE ag. N 075-15-2022-1101
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Error of Chernoff approximations based on Chernoff function
with a given t2-coefficient
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Let (X, || - ||) be any Banach space and .# (X ) denotes the set of all bounded
linear operators on X. Next we will use the notions of strongly continuous
one-parameter semigroup (or just Cy—semigroup), contractive semigroup and
generator of a strongly continuous semigroup, definitions of which can be found,
for example, in the book of Engel and Nagel [2]. In 1968 Paul Chernoff proved the
following theorem:

Theorem 1 (Chernoff [1]). Let X be a Banach space, F(t) be a strongly
continuous function from [0, o) to the set of linear contraction operators on
X, such that F(0) = I. Suppose that the closure A of the strong derivative F'(0)
is the generator of contractive Cy—semigroup {e**};>o. Then[F(t/n)|" converges
to e in the strong operator topology:.

Let us note that this theorem does not contain an estimate of the rate of
convergence. In 2022 was published the theorem that provides such estimate
under certain conditions:

Theorem 2 (Galkin, Remizov [3]). Suppose that:

DT >0,M; >1,w > 0. (A, D(A)) is generator of Cy-semigroup (') in a
Banach space X, such that ||e!?|| < Mye** fort € [0, T).

2) There are a mapping F': (0,T] — £ (X) and constant M > 1 such that we
have ||(F(t))*|| < MaeF®* forallt € (0,T) andallk € N = {1,2,3,...}.

3)m € NU{0}, p € N, subspace D C D(A™*P) is (e*4);>0-invariant.

4) There exist such functions K ;: (0,T] — [0,400),j =0,1,...,m+p thatforall

L+
"tk Ak g

t € (0,T) and allx € D we have S tmHt Z K;t)|| Az
=0

F(t)x —
k

=0
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Then for allt > 0, all integern > t/T and all x € D we have

wt M+P

M, Myt™He ;
— Z Cy(t/n)| ATz,
p=

I(F(t/n) e — e al <

where Cy,11(t) = Kypi1(t)e "t + My /(m + 1)l and C;(t) = K;(t)e~™* for all
j#Em+ 1

So the question arises: what is the lower estimate of the error ||(F' (t/n))"x —
e!4x|| 2 In 2018, Ivan Remizov formulated the following conjecture:

Conjecture (Remizov [4]). Let (e!);>0 be a Cp-semigroup in a Banach space
X, and F is a Chernoff function for operator A (recall that this implies F'(0) = I
and F’(0) = A but says nothing about F/(0)) and number 7' > 0 is fixed. Sup-
pose that vector x is from intersection of domains of operators F” (), F"' (t), F" (t),
F"'(#), F'(t)F"(t), (F'(t))*F" (t), (F"(t))? for each t € [0, T], and suppose that
if Z(t) is any of these operators then function t — Z(¢)x is continuous for each
t € [0,T]. Then there exists such a number C' > 0, that for each ¢ € [0,7) and
each n € N the following inequality holds, where B = F"(0) :

t2 C

n A A
(/)" — ha — e 4B~ A% < 5

Although this hypothesis is not true in general, the following theorem holds:
Theorem 3. Suppose that:

1) Cy-semigroup (e!“),>¢ in a Banach space X has bounded generator A €
Z(X).

2)T > 0 and there are a mapping F': [0,T] — .£(X) and constants M > 1,
w > 0 such that ||(F(t))*|| < Me*v forallt € [0,7), k € N.

3) There exist such bounded operator B € . (X ) and constant K > 0 that for all
t € [0,T) we have ||F(t) — I —tA — gBH < Kt°.
Then there exists such a number C' > 0, that for eacht € [0,T] and eachn € N
the following inequality holds:

2
2

1
L e e CEV S E T [E=s
0
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Temperature and entropy of self-gravitating dusty atmosphere
behind cylindrical shock

Pushpender Kumar Gangwar

Department of Physics, Bareilly College, Bareilly-243001 India

dr.pkgangwar@gmail. com

In this work, we have studied the change in temperature and entropy occurring
justbehind the cylindrical shock front in the e, for this, we have solved the problem
with a characteristic approach. The gases of the atmosphere have been considered
van der Waals gas, in which some dust particles are considered to be included.
In this study these dust particles are completely inert, solid, similar in size and
are uniformly distributed throughout the medium. The influence of overtaking
disturbances on the parameters, temperature, and entropy production of weak
and strong shock propagation with shock implosion, the mass concentration of
solid particles in the medium, have been calculated for exponentially changing
internal densities incorporating the effect of self-gravitation. The effect of the van
der Waals gas in the previously obtained solution for an ideal gas is described by
showing it through graphs. In the end, it has been found from this study that the
dust particles present in the atmosphere increase the strength of the explosions
in it. This increment in values of temperature and entropy become even stronger
for the van der Waals gas medium. Here all the work of the computer has been
done through MATLAB software.
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Ice-water phase transition in flow along small irregularities

Gaydukov R. K.'*, Danilov V. G.**
I National Research University Higher School of Economics
" romal990@gmail.com

" vgdanilov@mail.ru

We study the problem of a phase transition in a liquid flow along small irregu-
larities on the plate surface for large Reynolds numbers Re. Namely, we consider
the problem of water flow along a small ice irregularity localized at the point
o, i.e. the streamlined surface has the form y, = £*/3h(t, (x — z0)/¢), where
¢ = Re™'/? is a small parameter, h(t,£) is an continuous function localized on
¢ in a neighborhood of the point x, see Fig. 1. Note that the selected scales of
irregularity define the double-deck structure of the boundary layer [4]: a thin
boundary layer (see I in Fig.1(a)) is formed in addition to the classical Prandtl
boundary layer (see IT in Fig.1(a)), and the flow in I is described by

ou* ou*  Ohou* ou* 2u*
2/3Y% « Y% It UR * — *| >
ST +“(ag o€ aé) voag = OVt Gt M)
oh ou*
5/30h Ou”
AR TRV
ov* n ou* B @% B
o0 o€ o€ 00 o
(0 0%) gy = (0,0), (', 0")],_,,. = (f"(0)5,0), 22| =
U g=o = WU WLV ) ey o0 = b ol
00— 00

= f”(O)v U*|t:0 = UO(&,@),

where (u*,v*) is the velocity vector, £ = (z — x0)/c, 0 = (y — y,)/c*/? are
boundary layer variables, f is the Blasius function, Uj is some smooth function.

We consider two cases of the streamlined surface. First, the entire streamlined
surface is ice (i.e., the irregularity is a build-up or notch in the ice) [1], see Fig. 1 (a).
Second, the streamlined surface is a substrate of some (non-meltable) material,
and the irregularity is a frozen drop [3], see Fig. 1 (b).
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The ice-water phase transition is investigated using the phase field system [2]
based on the introduction of order function ¢ = ¢.(t,§, ) such that ¢ = +1
in the solid phase and ¢ = —1 in the liquid phase, and ( is a regularization
parameter (the function ¢ changes rapidly from —1 to 1 in the {-neighborhood
of the boundary between the phases). In the scales of the problem under study,
the system of phase field equations has the form

AR AL ) 0 (0T (0T

ot o0& cipl o€ o€ 00
10
=52 )
0
Ca % = C®BA¢opc + oc(1— 97) + C(1 — @H)T/V?2,

where T is the temperature, § = 6 + h(t, &), A = 1 in the liquid phase and A = 0
in the solid phase (the terms with the coefficient A are continuous at the interface
between phases due to the nonslip conditions for velocities, see (1)), A is the
dimensionless heat conduction coefficient, and others parameters are physical
constants or their combination, see [1] for details. The boundary between phases
at each time moment is defined as zero-level set of function ¢, i.e. h = {p = 0}.

Note that in the problem statement in Fig. 1 (b), there exists points &; (t), {2(¢)
at which the three media (water, ice and the substrate) contact. System (35)
defines the boundary between the phases everywhere except these points. The
conditions at the points &; (), £2(t) should be formulated separately, and we
propose two versions [3].

The work was supported by the RSF under grant No. 22-21-00186.
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Figure 1: The geometry of the problem
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Blow-up of solutions of nonlocal parabolic equation under
nonlocal boundary condition

Gladkov A. L.
Belarusian State University

gladkoval@mail ru

We consider the initial boundary value problem for nonlinear nonlocal parabolic
equation

wp = Au + aup/ ul(y,t)dy —bu™, x € Q, t >0, (1)
Q

with nonlinear nonlocal boundary condition

Qui1) _ [ Kt .00y, € 02, 1> 0, @)
(91/ 0

and initial datum
U(QC,O) = uO(x)v YIS Qa (3)

where a, b, p, ¢, m, [ are positive numbers, € is a bounded domain in RY for
N > 1 with smooth boundary 952, v is unit outward normal on 02.
We suppose that the functions k(x, y, t) and ug(x) satisfy the following condi-
tions:
k(z,y,t) € C(0Q x Q x [0, +0)), k(x,y,t) > 0;

(@) € C1@), (@) > 0in @, P9 [ 400 y) dy on 09
Q

Initial boundary value problem for parabolic equation (1) with nonlocal
boundary condition

u(z,t) = / E(z,y, t)u'(y,t) dy, © € 0Q, t >0
Q

was considered in [1; 2]. -
LetQr = Q2 x (0,T), Sp =092 x (0,T),T'r =SruUQ x {0}, T > 0.
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Definition. We say that a nonnegative function u(z,t) € C%1(Q7) N C*%(Qr U
I'r) is a supersolution of (1)—(3) in Qr if

wr > Au + aup/ ul(y,t)dy — bu™, (z,t) € Qr, (4)
Q
M > / k(x,y,t)ul(y,t) dy, (x7t) € Sr, (5)
14 JQ
ul@,0) > uo(w), v € Q, (6)

and u(z,t) € C?1(Qr) N C*°(Q7 U I'r) is a subsolution of (1)~(3) in Q7 if
u > 0and it satisfies (4)—(6) in the reverse order. We say that u(z, t) is a solution of
problem (1)—(3) in Q7 if u(x, t) is both a subsolution and a supersolution of (1)—(3)
in QT-
Theorem 1. Letu and u be a supersolution and a subsolution of problem (1)-(3)
in Qr, respectively. Suppose that u(x,t) > 0 oru(z,t) > 0in Qp UT'p if
min(p, ¢,!) < 1. Thenu(z,t) > u(x,t) inQr UT'r.
Theorem 2. Let max(p + ¢,1) < 1 orl < max(p + ¢,1) < m. Then every solution
of (1)-(3) is global.

To formulate finite time blow-up result we suppose that

inf / k(2,,0)dS, > 0. (7)
2 Joq

Theorem 3. Let eitherr + p > max(m, 1) orl > max(m, 1) and (7) hold. Then
solutions of (1)-(3) blow up in finite time if initial data are large enough.
Remark. We improve comparison principle, global existence and blow-up results
in [4].

The results of the talk have been published in [3].
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Topological structure of manifolds supporting axiom A systems

Grines V.'*, Medvedev V.'**, Zhuzhoma E.'***
! Research University Higher School of Economics (Russia, Nizhny Novgorod)
" vgrines@yandex.ru

" medvedev-1942@mail.ru
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Dynamical systems satisfying an Axiom A (in short, A-systems) were intro-
duced by S. Smale. By definition, a non-wandering set of A-system is the topologi-
cal closure of periodic orbits endowed with a hyperbolic structure. Due to Smale’s
Spectral Decomposition Theorem, the non-wandering set of any A-system is a
disjoint union of closed, invariant, and topologically transitive sets called basic
sets. ,

Let M™, n > 3, be a closed orientable n-manifold and Gilf F(M™) the set of
A-diffeomorphisms f : M™ — M™ satisfying the following conditions:

1. f has k > 0 nontrivial basic sets each is either an orientable codimension one
expanding attractor or an orientable codimension one contracting repeller,
and there are no another non-trivial basic sets;

2. the invariant manifolds of isolated saddle periodic orbits are intersected trans-
versally;

3. the codimension one separatrices of isolated saddle periodic orbits are without
heteroclinic manifolds. .

We prove that if M/™ admits f € Gilf f (M™), k > 1, then M™ is the connected
sum of k n-tori T, and S"~! x S'’s, and a simply-connected manifold admitting
a polar Morse-Smale diffeomorphism with no codimension one saddle periodic
orbits where S' is a [-sphere. For k = 0, we show that Gglff(M”) consists of
Morse-Smale diffeomorphisms. We prove that if M™ admits f € Ggif F(mm,
then M™ is either S™ or the connected sum of S”~! x S1’s and simply-connected
manifolds N;* admitting polar Morse-Smale diffeomorphisms.

Authors thank for a support the Russian Science Foundation (grant 22-11-
00027), this work was fulfilled in the Laboratory of Dynamical Systems and Appli-
cations of HSE University that being financed by the grant 075-15-2022-1101 of
the Ministry of Science and Higher Education of RE
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Automorphisms of limits for inductive sequences of the
Toeplitz-Cuntz algebras and generalized means on the P-adic
solenoids

Gumerov R. N.
Kazan Federal University

Renat. Gumerov@kpfu.ru

The talk deals with the automorphisms of C*-algebras and the generalized
means on compact groups which are called the P-adic solenoids. The C*-algebras
under our consideration are the inductive limits for the inductive sequences of
the Toeplitz-Cuntz algebras whose connecting homomorphisms are defined by
tuples consisting of sequences of prime numbers. We consider properties of the
limit *-endomorphisms of these C*-algebras. The limit *-endomorphisms are
induced by morphisms between the copies of the same direct sequences of the
Toeplitz-Cuntz algebras.

We discuss the criterion for the limit ¥-endomorphisms to be automorphisms
which is formulated in terms of the existence of the generalized means on the
P-adic solenoids. This criterion is closely related to the results in [1-3].

The talk is based on the results of the joint work with E. V. Lipacheva (KSPEU,
KFU).

References

1. Gumerov R. N. Limit automorphisms of the C*-algebras generated by isometric
representations for semigroups of rationals // Sib. Math. J. —2018. —Vol. 59, no. 1. —
P. 73-84.

2. Gumerov R. N. On finite-sheeted covering mappings onto solenoids // Proceedings
of the American Mathematical Society. — 2004. — Jan. — Vol. 133. — P. 2771-2778. —
DOI: 10.2307/4097643.

3. Gumerov R. N. On the existence of means on solenoids // Lobachevskii J. Math.
Soc. —2005. —Vol. 17. — P. 43-46.

86


mailto:Renat.Gumerov@kpfu.ru
https://doi.org/10.2307/4097643

Convex structure of generalized states, effects and ultraproducts

Haliullin S. G.
Kazan Federal University

Samig. Haliullin@kpfu.ru

In the report abstract convex structures of states and generalized states defined
on the event space will be considered. The concept of operations on generalized
states and related effects and ultraproducts of the corresponding convex struc-
tures will also be considered [1; 2].
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Multiplication formulas for Gaussian operators

A. S. Holevo
Steklov Mathematical Institute, Russian Academy of Sciences

holevo@mi-ras.ru

The operators of the form exp P(R), where P(R) is a polynomial of the order < 2
in the canonical observablesR = [¢1,p1, .. ., gs , ps), constitute a semigroup with
respect to the operator multiplication. A number of useful formulas, including
square root of a divisible element, were obtained by different authors. Notably,
by using expressions ,/p1 p2,/p1 for Gaussian operators p1, p2 obtained by Lami-
Das-Wilde, Banchi-Braunstein-Pirandola and by the author, allow for explicit
computation of:

* Fidelity between two arbitrary Gaussian states;

* Accessible information of arbitrary Gaussian state ensemble;

* Entropy reduction of arbitrary Gaussian state underlying entanglement-assisted
capacity of Gaussian measurement channel.
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Mat-Balance as the Sewing Machinery Analitic and Numeric
Solution
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Let 2-D flow in the porous media domain U to be generated by source(sink)
modeled by small area w inside two dimensional ball-B(or radius 7., inside
a cell of By. Let Uy (x,y,t) to be e discreet solution defined on the grid Uy
approximating domain U. Consider connected five-spot cells U?_, B; with By D
B, and By, B, Bs, and B, surround center cell By. This 5-cells characterized
by size A >> r,. Assume P, is a numerical solution of the problem in the
discretized domain of the flow. Flow itself is Main goal is: How to accurately
interpret numerical value of the py, which associates to the box By w.r.t. ac-
tual(analytical) value of the pressure on the well T, = dB(r,,). Note that in the
intended application, discretization of the I, is not possible.

To solve this problem, we consider sewing machinery between finite difference
and analytical solutions defined at different scale: far away and near the source
of the perturbation of the flow. One of the essences of the approach is that coarse
problem and boundary value problem in the proxy of the source model, two
different flows. We are proposing a method to glue solution via total fluxes, which
is predefined on coarse grid. It is important to mention that the coarse solution
“does not see” boundary.

From an industrial point of view, our report provides a mathematical tool
for analytical interpretation of simulated data for fluid flow around a well in
a porous medium. It can be considered as a mathematical “shirt” on famous
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Peaceman well-block radius formula for linear (Darcy) radial flow. Note that in
known authors literature, rate of the production on the well-q is time independent.

We developed a method to determine Peaceman well block radius Ry which
depends only on stationary parameters, and converges to Peaceman radius R, in
cylindrical reservoir when external radius of the domain of the flow converges to
infinity, for a class of dynamic flows which rottenly is used industry. We enlarge
MB equation for three regimes of the Darcy flows:

L. Stationary (SS); II. Pseudo Stationary (PSS); III. Boundary Dominated(BD).

To introduce MB system of equation let first consider the finite set of depen-
dant variables

P = {Pir0.0(8); Do, £r0 () P1,0(8): po,+1(8); 4 (8); 4 () } - (1)

Let
K={KfKf} andQ={QF:QF}. (2)

be inputs, which in this study are considered to be constants. To make discussion
more motivated we will highlight intended application.

Major assumption is that process of the transport and changes of the fluid is
much “faster” than geological process, and therefore dependents of the K and Q
to be ignored. Assume for clarity that process which will be modeled by inputs
P, Q, K are linear, isotropic and one dimensional. In this case variable ¢(s) and
p;(s) are assumed to be constrained the following MB equation Assume that
1 = 0, 1 then using above arguments, we are considering Algebraic Parametric
Structure as a sewing machinery between numerical and “analytical” solutions :

7 (JTo - (po(s) = pr(s) — Iy - q) = LE° - (po(s + 7) — po(s)) (3)

Value of the coefficients and their dependence on input parameters can vary
depending on the intended applications, dimension, geometry and dynamics of
the process, discretization, etc.

In a view of the algebraic structure equation 3 ¢ is main input definitive pa-
rameter , three others .J{ , I, and L?° are auxiliary but are crucial characteristics
of the system.

Let in material balance equation 3

1 1
L) =a- e =2K 25 Ll =0 G0 0 =1
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Then MB equation 3 takes form

(s +7) = pols)

2K - (po(s) — pi(s)) = —q(s) - A + C° - 2 A2 (5)

Then symmetrical, isotropic and steady-state steady MB has the form

2K - (po — p1) = qA. (6)

Let 1 — D domain (0; R, ) is splitby grid [0, A,2 - A, .- N - A]were NA = 7.
We will say that Peaceman problem is well posed w.r.t. MB 6 for 1 — D flows if
for any given A exist Ry depending on A s.t. analytical solution of the 1-D SS
problem satisfies equation:

—2K - (pan<A) 7pan(RO)) =4q- A. (7)

From explicate formula for analytical solution in SS case follows that Peaceman
problem to be well posed w.r.t. MB (6) it is necessary and sufficient that Ry = %.

Let define the PSS constrain for the solution of algebraic material balance
equation assuming in addition that py p; and ¢ are conditioned as follows

We will say that for MB satisfies PSS constrains if ¢(s) = ¢, po(s+7) —po(s) =
q-Co-7,and p1(s) — po(s) are s independent,

Then linear 1-D PSS Material Balance will have form

2K - (p1 —po) =2K-=qA (1 — ¢, - 1- CoA) = qgA (1 — C1A). (8)

We will say that Peaceman problem for PSS is well posed w.r.t. time dependent
MB 5 for 1 — D flows if for any given A, and r. exist R,"*(A, r.) depending on A
and r, s.t. analytical solution of the 1-D PSS problem satisfies equation (8) and in
constrains for PSS MB . From explicate formula for analytical solution in PSS case
follows that Peaceman problem to be well posed w.r.t. MB (8) it is necessary and
sufficient that

2
RE*(A,re) = a + 24 ,morover lim RE*(A,r.) = Ry.

L+ 1+ 229 e reroo

2
Te

(9)
Algebraic MB-constrains for boundary dominated is stated as follows: a. Exist

constants Qo; P1; Py, s.t. for variables p; and ¢ in MB equation the following
e—C(K,re) T _q

ratios :;O((SS)) = Qo(re), Z;g:g =P1(A,7e); p‘;(:(':;) =Py(A,re)s———ares
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independent (Note that in above Py (A, ) is constant depending on A and r,
only). We will say that Peaceman problem is well posed for BD regime of flow if
exist analytical solution for which all above constrain and this analytical solution
satisfies (5). We proved that exists analytical solution which satisfies MB equation

(5) and all above constrains. Moreover correspond RFP can be calculated using
equation:

A 2
3 C,
R ~ %assuming that (2 Kp %A is small enough. (10)

Article funded by the grant : 122022800272-4.
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On Stability of Solitons for a Rotating Charge with a Fixed

Center of Mass in the Maxwell Field

Imaykin V. M.
High School No 179, Moscow, Russian Federation

ivmé6l@mail.ru

The system for a rotating charge with a fixed center of mass in the Maxwell

field reads [1],

E(—z,t) = —E(x,t), B(—=x,t) = B(x,t)

(symmetry conditions),

E(z,t) = VA B(z,t) — (w(t) Az)p(x), Bz, t) = -V A E(z,t)
(Maxwell equations),
V- E(x,t) =p(x), V-B(z,t)=0
(constraints),
To(t) = /x NE@, ) + (@(b) A 2) A Bz, O)]p(@) do

(Lorentz torque equation).
We consider solutions of finite energy

H(w,E,B) = %“’2 + %/ (|E(x)\2 + |B(x)\2) dx < oo.

The solitons (stationary solutions) for the system (1)-(4) have the form
E(x,t) = E,(x), B(x,t) = B,(z), w(t) =w = const € R,
The solitons satisfy the stationary equations

Ew(—l‘) = —Ew($), Bw(—$) = Bw<x)a
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V AB,(z)— (wAz)p(x) =0, VAE,(x)=0, (8)
V- Ey(z)=p(z), V-Bu(z)=0, (9)

/x A[E,(z) + (w A z) A B,(z)]pdx = 0. (10)

Theorem 1. a) The zero soliton with w = 0 is Lyapunov stable and orbital
stable.

b) Let us fix a non-zerow € R> and R > 0. Consider solutions to the Cauchy
problem for the system (1)-(4) with initial dataw + Qo, E,(x) + eg(x), By, (x) +
bo(z). The soliton (w, E,,(x), B, (x)) is Lyapunov stable and as well orbital stable
with respect to perturbations
(Q0, e0(x), bo(x)) such thatsupp eg C {|z| < R} andsupp by C {|z| < R}.

The angular momentum is defined by

M(w, E,B) := Iw—f—/:v/\(E(ac)/\B(:L‘))dx. (11)
Theorem 2. Let for a non-zero soliton (6)
M, = 1w +/ x A (B, (z) A By(z)) de < oo.

Then the soliton is not Lyapunov stable and is not orbital stable.

To prove Theorem 1 we analyze the equation for perturbations of the soliton;
the Huygens principle is exploited.

To prove Theorem 2 we construct a special one-parametric family of pertur-
bations of initial data. The perturbations have compact supports which tend to
infinity depending on the parameter. Thus, the result on instability is consistent
with Theorem 1.

Note that for a close system, under some other special conditions, the stability
of solitons is proved in [2].
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On the explicit generating function expression for the invariant
measure of critical Galton-Watson Branching Systems

Azam A. Imomov

Karshi State University, Karshi, Uzbekistan

imomov_azam@mail.ru

LetNg = {0} UNand N = {1,2,...}. Consider an ordinary Galton-Watson
Branching (GWB) system with a state space Sy C Ny and an offspring law
{p;,j € So}. Let Z(n) be the population size at the moment n € N,. The
stochastic system {Z(n)} forms a reducible, homogeneous and discrete-time
Markov chain whose state space consists two classes: Sp = {0} U S, where
S C N, therein {0} is an absorbing state, and S is the class of possible essential
communicating states. The offspring law {py, k € S} fully defines a structure of
the GWB system. In fact, we observe that an appropriate probability generating
function (GF) E [s?™ | Z(0) =i] = [fa(s)]  forall s € [0,1), where the GF
fn(s) = E;s7(™ is n-fold functional iteration of GF

f6) =3 prst,

keSo

ie. fn+1(8) = f (fn(s)) = fn (f(S)) Undoubtedly f(l_) = Zjego p; = L.
Denoting ¢ be the smallest root of the equation f(s) = s for s € [0, 1], we recall
that f,,(s) — g asn — oo uniformly in s € [0, 7] for any fixed » < 1. So, the GWB
system is a discrete dynamic system generated by the GF f(s) and with the fixed
point g, which is an extinction probability of a trajectory of the system initiated
by one individual; see [1, Ch. I].

Assume that the offspring GF f(s) for s € [0, 1) has the following form:

fo) =5+ -9 () £

where 0 < v < 1 and L(*) slowly varies ([2]) at infinity. Assumption [f, | implies
that the per-capita offspring meanm := .5 jp; = f'(1-) = land f"(1-) =
00, so that our system is critical type with infinite variance. In this case Slack [4]
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has shown that there exists an invariant measure whose GF U (s) has the following
local expression:

N 1
v(l —s)VL(1 — s)

U(s) as st1,
where L(x) is a slowly varying function at zero.

In this report we provide an alternative argument against Slack’s one and
we obtain the global expression for all s € [0, 1) of the function U (s) and its its
derivative. Let
1 1= f'(s)

and J(s) = ———= -1,

V(s) : Al =)

= vA(1 — s)
where A(y) := y”L (1/y).

Theorem 43.1 Ifp, > 0 and the condition [f,] holds, then
(1) the GFU/(s) has the following form:

(2) the derivative U’ (s) has the following expression:

Yis)

U'(s) = J(s)1 —

Remark 1 Undoubtedly, the function U(s) admits the form of a power series
expansionU(s) = Y su;s’, wherew; = 3, s up Pyj(1) and Y-y s uppfy = 1;
see [4, Lemma 4]. Then it immediately follows that

J(0) _ L—po—p1

— ! p—
uy = U (O) - VDo Vp%

Assertions of Theorem improve the corresponding results in [3].
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Lev Dmitrievich Kudryavtsev in the MIPT

Ivanov G. E.
Moscow Institute of Physics and Technology
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The report will talk about the work of Lev Dmitrievich in the MIPT from 1947
to 2012.
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Number-theory renormalization

M. G. Ivanov
Moscow Institute of Physics and Technology

ivanov.mg@mipt.ru

In most models of quantum field theory (QFT), the problem of renormaliza-
tion arises. We assume that the problem may be related to the uncritical use of
real numbers. The possibility of using other numerical systems was raised in the
monograph [4]. The role of number theory in physics was discussed in the paper
(5].

We build a lattice QFT using arithmetics in the ring Z (V) of residue classes
modulo N. This arithmetic is native for lattice. The renormalization is N =
0 (mod N) and the transition from the representation of Z(N) as {0, ..., N — 1}
to{—n,..., N —n — 1}. The renormalization and its generalization from lattice
to continuous space arises in consideration of digital representation of quantum
coordinates and momenta [1], [3], [2].

We consider a bosonic and fermionuc QFT on a lattice Z?(N) with the Hamil-
tonians

I:Ib = Z E(p2) (2?)2;51) + 1) P [l;plai)gz] = 5[’11’2 i’
PEZA(N),p2€D
Hf = Z E(p?) (&IT’+&p+ - &L—dP—) ’ [&1’“’1"}1)2”2]4r -

pEZL(N),p?€D

= 6P1P2 60102 iv
d
p’=> pi €Z(N), E:D—ZL(N), DCZL(N).
k=1
The bosonic vacuum energy is the sum of the zero oscillation energies for all

permissible values of the momentum and fermionic vacumm energy is the sum
of all negative energies

E=CEcv=—Eacr= P, E@)= > cna(k)E(k) € Z(N).
pEZ*(N),p2€D kEDCZ(N)
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Here the multiplicity ¢y g, (k) is

d
cnam (k) = (the number of nodes p € Z(N) such that prf = k (mod N)).

n=1
(1)
Theorem. For an arbitrary NV with d > 3, and for N = 2" withd > 2

Vk € Z(N) cna(k) =0 (mod N). @)

When the conditions of the Theorem are fulfilled for an arbitrary function
E : D — Z(N) the vacuum energy calculated in the ring of residue classes Z(N)
is zero.

The renormalization of vacuum energy is the first step of our research pro-
gramm. We plan to consider other QFT effect in Z(N) arithmetics.

The problem is also interesting from a number-theoretic point of view. One of
us (V. Naumov) formulated and numerically tested the following hypothesis:

1) For arbitrary integersd — 1 > m > 0and N > 1,Vk € Z(N) cyam (k) =
0 (mod N).

2)Ifd <m+1,thendN € N: cygm Z0 (mod N).

The hypothesis is obvious for m = 0 and m = 1. For m = 2, the hypothesis
follows from the Theorem. The first statement of the hypothesis is verified nu-
merically for all cases m < 8 and N < 1000; m < 35and N < 300; m < 100 and
N < 37. The second statement of the hypothesis is verified for all m < 100.
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Control problem for a parabolic system with disturbances and a
convex goal
Izmest’ev I. V.I'2* Ukhobotov V. L.1**

IN. N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Ekaterinburg,
Russia

2Chelyabinsk State University, Chelyabinsk, Russia
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The distribution of the temperature T;(x, t) in the i-th ( = 1, m) homoge-
neous rod of unit length as a function of time ¢ is described by the heat equation

aTi(l‘a t) _ 627-;(‘%" t)

ot gz thil@n), 0<t<p 0<z<l i=Tm (1)
X

We know the estimate for continuous functions f;(z, t), which are the densities
of heat sources,

FO(,t) < filz,t) < fP(ayt), 0<t<p, 0<a<l, i=Lm (2

Here, the functions f(!) and f(*) are continuous.

At the initial time ¢ = 0, the temperature distributions 7;(x,0) = g¢;(z),
i = 1, m are given, where g;(z) are continuous functions, and g;(1) = 0,7 = 1, m.
We assume that the controlled temperatures 7;(0, ¢) and 7;(1, t) at the ends of
each i-th rod vary according to equations

% = b(l)(t) 4 b (t)ni(t)7 |771(t)‘ <1 (4)

Here the functions a¥) (t), b®)(t), k = 1,2 are continuous for 0 < ¢t < p, and
a®(t) > 0,3 (t) > 0. The functions &;(t) are controls, and the functions 7 (t)
are disturbances.
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Given a continuous function ¢ : [0,1] — R that satisfies the conditions
0(0) = o(1) = 0. The function o(x) is used to determine the mean value of
temperature

1
/ Ti(x,t)o(z)de, 0<t<p, i=1,m,
0

realized at time ¢ in ¢-th rod.
Let number e > 0 is given. The goal of choosing controls ;(¢) (3) is the
fulfilment of the inequality

max
ij=1,m

<e (5)

/ T p)o @) — / T e p)o @)

for any realized disturbances 7;(¢) (4), ¢ = 1, m and for any continuous functions
filz, 1) (2),i =1, m.

After the change of variables, we obtain the following single-type differential
game

2(t) = —a(t)u+b(t)v, z€R™, weQ, veEQ, (6)

with terminal set
Z(e)={z€R™: f(z) <e}. (7)

Here, () is a convex compact, f is a convex function.
Using [2], we construct the alternating integral [1] in the game (6), (7)
W(t,e) = Z(e)-B(t)Q + a(t)Q.
Here, A~B = {z € R™ : z + B C A} denotes the geometric difference [1] for
two sets A and B from R™;
P T

B(t) = max (b(r) — a(r))dr, «(t) = max (a(r) — b(r))dr.

t<7<p Jy t<7<p J;

For the initial positions z(0) € W (0, €), we have construct a control u(t, z)
that solves problem (6), (7). In addition, controls &; (3) are constructed that solve
problem (1), (5).

The research was supported by a grant from the Russian Science Foundation
no. 19-11-00105, https://rscf.ru/project/19-11-00105/.
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Displacement operators approximations for noncanonical
commutation relations

Kalmetev R. Sh.
Keldysh Institute of Applied Mathematics

kalmetev@phystech.edu

In this talk we consider the problem of approximating displacement operators
acting in optical phase space. We study cases of noncanonical commutation
relations and introduce the concept of displacement duality for ladder operators.
We propose an example of a parametric family of noncanonical commutation
relations for which one can construct unitary displacement operators that satisfy
the semigroup property on lines passing through the origin in the phase space.
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Irreversible dynamics of composite open quantum systems

Karasev A. Yu.'*, Teretenkov A. E.!
Faculty of Physics, Lomonosov Moscow State University
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The usual setup of open quantum systems theory assumes unitary dynamics
of a system and a heat bath. In this work we consider dynamics, where the
system of interest and the reservoir initially constitute a composite open quantum
system instead. This approach seems to be natural when a system in a reservoir
is composite, i.e. consists of subsystems, and we are only interested in one of the
subsystems.

We use the Nakajima-Zwanzig projection approach in our work, both because
it is widely used in open quantum systems theory, and because it allows using
different projection, i.e. different approaches to identification of the system of
interest inside the composite system, in a uniform manner. We assume a small
coupling between the system of interest and the reservoir. We are looking for the
approach which in principle can work in all the orders of perturbation theory, so
we derive time-convolutionless master equations. We also use an inhomogenious
term to take into account the non-factorizible initial conditions.

To illustrate our results we consider the Jaynes—Cummings model with dis-
sipation. In our opinion, the most interesting feature of this example is that
inhomogeneous terms in time-convolutionless master equations vanish in the
Bogolubov-van Hove perturbation theory, but lead to renormalization of initial
conditions.
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Ordered Exponential and Its Features in Yang-Mills Effective
Action

Kharuk N. V.'*, Ivanov A. V!

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy
of Sciences

" natakharuk@mail. ru

Ordered exponential often occurs in mathematical and theoretical physics. For
example, it is widely used in differential geometry as a solution of the parallel
transport equation on the principle bundles. The ordered exponential also ap-
pears in the field theory, since it is used to make a transition to the Fock-Schwinger
gauge in the non-Abelian gauge theories. In addition, it arises in the theory of
integrable models, in the heat kernel method, and in other areas.

Formally, the ordered exponential is represented as a product of integrals. In
our work we consider a rather general case of a smooth Riemannian manifold
with an arbitrary integer dimension. Several new representations were obtained
for the ordered exponential as an infinite sum with covariant derivatives and
the limit of the operator exponent. Also, non-trivial properties of the product of
several ordered exponentials are proved.

The application of the obtained results to the four-dimensional quantum
Yang-Mills theory is discussed separately. As is known, the form of the effective
action is important in loop calculations. Using the obtained properties, it was
shown that the effective action of the Yang—Mills theory depends on the field
strength and its covariant derivatives.

This research is supported by the Ministry of Science and Higher Education of
the Russian Federation, agreement 075-15-2022-289, and by the “BASIS” founda-
tion grant “Young Russian Mathematics’.
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On generating phase-damping channels

Khazhin R. L.
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The report consists of two parts. The first part deals with the quantum channels
on composite quantum systems. The quantum channels on composite systems
were considered by a number of authors (see [2] and the references therein). The
main objects of our study are the channels on composite systems that uniquely
determine the channels on subsystems.

In the sequel, all Hilbert spaces are assumed to be finite-dimensional. For
a Hilbert space H, we denote by L(H) the linear space of all linear operators
on H. Positive semidefinite linear operators in L(H ) having trace equal to 1 are
called quantum states. The set of all quantum states acting on H is denoted by
S(H). We recall that, for Hilbert spaces H; and Ho, a linear completely positive
trace-preserving operator ® : L(H;) — L(H>) is called a quantum channel. The
partial trace over a Hilbert space E is the quantum channel defined by the formula

trg: L(H® E) — L(H), trg(A® B)=1tr(B)- A,

where A € L(H), B € L(FE) and tr(B) is the trace of B. For a quantum state
o € S(E), by the preparation P, of composite system we call the quantum
channel defined as follows:

Py:LH) — L(H®E), P,(A)=A®o0,

whenever A € L(H).

To introduce the notion of a generating cannel, we consider a quantum
channel ® : L(H ® F) — L(H ® E) on a composite system. Then, for each
quantum state o € S(E), we define the channel G4 ,, by

Goo=trgo®oP,: L(H) — L(H).
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The quantum channel ® on a composite system is called a generating channel
if the following equality holds

Gq),n'l = G<I>,rr2

whenever 01,02 € S(E). In this case, the quantum channel Gg ,, 0 € S(E), is
denoted by G's and is called the channel generated by ®.

We discuss properties of generating and generated channels. To this end,
we give several examples of the phase-damping channels. The properties of the
phase-damping channels were studied in [1; 3].

The second part of the report is concerned with one-parameter families of
quantum channels. Such families are also called the quantum processes.

We consider the quantum processes consisting of the phase-damping chan-
nels. The divisibility properties of the quantum processes are discussed in our
report.
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Integrable billiard systems on multidimensional CW-complexes

Kibkalo V. A.
Lomonosov Moscow State University

slava.kibkalo@gmail. com

Hamiltonian system with n degrees is called an integrable one if it has a set of
n independent involutive first integrals. In the case of two degrees of freedom,
one usually requires the presence of a first additional integral independent on
the Hamiltonian. The phase space of such a system is stratified into common
level surfaces of the first integrals of the system, i.e. a Liouville foliation with
singularities is given on it. A typical regular fiber is homeomorphic to an n-
dimensional torus, and non-degenerate singularities are described in terms of
direct products factorized by the action of a finite group.

In recent years, interesting results have been obtained on integrable billiards.
The proof of several analogues of the classical Birkhoff billiard conjecture showed
that the class of flat integrable billiards “almost coincides” with the class of
confocal billiards. The domains (tables) of these billiards are bounded by a
piecewise-smooth curve composed of smooth arcs of ellipses and hyperbolas
with common foci.

Nevertheless, from the topological point of view (to which the Liouville fo-
liations are fiberwise homeomorphic), this class of billiards with 2 d.o.f. has
been substantially extended preserving integrability. V.Vedyushkina introduced
billiards on piecewise-flat CW-complexes with permutations on its 1-edges (acting
on flat 2-regions glued along them), called billiard books. The class of Liouville
foliations realized by them turned out to be very wide, and according to the
conjecture of A. Fomenko a wide class of such integrable systems which appear in
dynamics, geometry and mathematical physics and be realized by such billiards.
The possibility to realize an arbitrary non-degenerate singularity and an arbitrary
base of the Liouville foliation (in the non-singular energy zone) of a system with
such singularities has already been proved by V. Vedyushkina and I. Kharcheva.
The classification of billiard books and their topological invariants is of particular
interest: the nontriviality of the foliation turns out to be encoded in a sophisticated
way by systems of permutations on the 1-edges of the table-complex commuting
at its 0-vertices.
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The report is devoted to the development of this approach in the case of higher
dimension: n-dimensional cells of CW-complex are glued together from regions
of R™ bounded by quadrics from a family of confocal quadrics

2 2
x7 T
o 2

=1 0<ap<--- cAe0,aq].
P PR , <ap<--<ay € 10,a4]

The n — 1-dimensional facets of this complex are equipped with cyclic permuta-
tions acting on the regions, and the condition of their commutation is assigned to
cells of dimension n — 2. The notion of a multidimensional billiard book will be
introduced, basic properties of them and billiard systems owill be discussed with
an illustration in the case of a three-dimensional space and a family of confocal
quadrics (containing ellipsoids, one-sheeted and two-sheeted hyperboloids).
This construction will be used to model non-degenerate singularities. systems
with 3 degrees of freedom.

This work was supported by the Russian Science Foundation grant 22-71-
10106 and done at Lomonosov Moscow State University.
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Subordination principle and Feynman-Kac formulae for
generalized time fractional evolution equations
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We consider generalized time-fractional evolution equations of the form

u(t) = ug + /0/ k(t,s)Lu(s)ds

with a fairly general memory kernel k£ and an operator L being the generator of
a strongly continuous semigroup. In particular, L may be the generator L of
a Markov process £ on some state space (), or L := Ly + bV + V for a suitable
potential V' and drift b, or L generating subordinate semigroups or Schrédinger
type groups. This class of evolution equations includes in particular time- and
space- fractional heat and Schrédinger type equations. Such equations are used
in models of anomalous diffusion.

We show that the subordination principle holds for such evolution equations
and obtain stochastic solutions and Feynman-Kac formulae for solutions of these
equations with the use of different stochastic processes, such as subordinate
Markov processes and randomely scaled Gaussian processes. In particular, we
obtain some Feynman-Kac formulae with generalized grey Brownian motion and
other related self-similar processes with stationary increments.

The talk is based on the joint work with Ch. Bender and M. Bormann.
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In recent years, using the geometric and real analysis methods, essential
progress has been achieved in some classical Leray’s problems on stationary
motions of viscous incompressible fluid: the existence of solutions to a boundary
value problem in a bounded plane and three-dimensional axisymmetric domains
under the necessary and sufficient condition of zero total flux; the uniqueness
of the solutions to the plane flow around an obstacle problem in the class of
all D-solutions, the nontriviality of the Leray solutions (obtained by the “invad-
ing domains” method) and their convergence to a given limit at low Reynolds
numbers; and, more generally, the existence and properties of D-solutions to the
boundary value problem in exterior domains in the plane and three-dimensional
axisymmetric case, etc. A review of these advances and methods will be the focus
of the talk. Most of the reviewed results were obtained in our joint articles with
Konstantin Pileckas, Remigio Russo, Xiao Ren, and Julien Guillod, see, e.g., the
recent survey paper J. Math. Fluid Mech. 25 (55) (2023).
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We consider a sequence of integral functionals F,: W1P(Q,) — Rand a
sequence of generally non-integral functionals G5 : W1P(Q,) — R, where {Q}
is a sequence of domains in R" contained in a bounded domain 2 C R” (n > 2)
and p > 1. We assume that, for every s € N, the integrand f;: Q; x R" — Rof
the functional F satisfies a convexity condition and the inequality

c1lglP — ps(x) < fo(,8) < ealé]P + ps(z)

for almost every x € 2, and every ¢ € R", where ¢; and ¢, are preassigned
positive constants and /i, is a nonnegative function in L*(),). In addition, we
assume that the sequence of norms ||| 1 (q,) is bounded. The functionals G
are assumed to be weakly lower semicontinuous and coercive with respect to
LP-norms of functions in W17 ().

Along with the functionals F, and G, we consider sequences V, C WP (Qs)
of the following forms:

Ve={ve Wl’p(Qs) cp <wv < ae in}, (1)
Ve, ={veW'(Q,): hy(v) <0 a.e.inQ,}, (2)
Ve = {v e WHP(Q,) : My(v) <0 ae.inQy}. (3)

Here, p,¢: Q — R are measurable functions, {hs} is a sequence of functions
on R, and M, is a mapping from the space W1?(Q,) to the set of all functions
defined on Q,. Obviously, sets of the form (2) can be written in the form (3).
However, it is more convenient to study the particular case (2) separately.

In the talk, we describe conditions on the involved domains and mappings
which ensure the convergence of minimizers and minimum values of the function-
als F, + GG, on the sets V, to a minimizer and the minimum value of a functional
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J: W1P(Q) — Ron the corresponding limit set V. C W1?(Q). In particular, in
each of cases (1)—(3), we assume that the sequence of spaces W1?(,) is strongly
connected with the space W1?(Q) and the sequence of functionals F; -converges
to a functional F': W1?(Q) — R (see, e.g., [3] for the related notions).

As for the constraint sets V, in case (1), we assume that there exist functions
@, € WhP(Q)such that o < ¢ < 1 < ¢ a.e.in Q.

In case (2), defining, forany a: R — R, ®(a) = {t € R: a(t) < 0}, we require
that the sets ®(h;) be nonempty and closed and there exist a function h: R — R
such that the set ®(h) is nonempty and closed and the following conditions are
satisfied:

(a)ift € ®(h), then there exist t1,t2 € Rsuch thatt; < ty andt € [t1,ta] C
®(h);
(b)ift1,t2 € Rty < tg, (t1,t2) C ®(h),and 0 < o < (t2 — t1)/2, then there
exists
5 € Nsuch that, forany s € N, s > 5, we have [t; + 0,12 — 0] C ®(hs);
(c)ift; — tinR, {§,} is an increasing sequence in N, and, for any j € N, we
have
tgj S q)(hg ), thent € (I)(h)

J

Finally, in case (3), we assume some conditions characterizing both the in-
ternal properties of the mappings M, and their relation to a mapping M from
the space W1?(Q) to the set of all functions defined on ). These conditions
make it possible to study the convergence of solutions of variational problems
with variable unilateral constraints combining the pointwise and functional
dependence.

For the strict statements and proofs of the results presented in the talk, see [1-
3].
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Scenario of the mildly stable transition from a structurally
stable 3-diffeomorphism with a two-dimensional expanding
attractor to a hyperbolic automorphism
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The results presented below were obtained in collaboration with V.Z. Grines
and O.V. Pochinka.

Let M? is a closed three-dimensional manifold and G is the class of the
structurally stable A-diffeomorphisms of the manifold M3 such that if diffeomor-
phism f € G than non-wandering set of f NW () contains a two-dimensional
expanding attractor. V. Z. Grines and E. V. Zhuzhoma [3] proved that other basic
sets of NW ( f) are trivial and the supporting manifold M3 is diffeomorphic to
the three-dimensional torus.

ail a2 ais =R
Foranymatrix A = [ a2; a2 az3 | € GL(3,Z)wedenoteby A : T3 —
asy azz ass
T3 the diffeomorphism defined by formula

o~

A(z,y, z) = (a11x+a12y+0a132, a21x+azy+aiez, az1x+azay+asszz) (mod 1).

According to J. Franks among the homotopy to identity continuous maps of the
torus 7 there is a unique map h ¢ which semi-conjugates the diffeomorphism f
with the diffeomorphism A -

V. Z. Grines and E. V. Zhuzhoma [2] proved that the image h ¢ (A) of the set A is
the whole torus 7%, and the set By = {z € T% : h;l (x) consists of more than one
point} is the union of the finitely many periodic points Py = {1, 02, ..., 0x } of
the diffeomorphisms A ¢ and their unstable manifolds. In this case h;l (0i) NA,
1€ {1,2,...,k} consists of a pair of boundary associated points p;, ¢; of the basic
set Aand hy(Lyp,q,) = 0:.

Connecting an arbitrary diffeomorphism from class G and a diffeomorphism
of the same class whose non-wandering set does not contain isolated saddle
points a smooth arc was constructed [1].
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There is discussed the following result in the report.
Theorem. For any diffeomorphism f € G, there exists a mildly stable arc
& T3 — T3, t €[0,1] connecting & = f with the hyperbolic automorphism

&= Ay
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Metrics of space-time: the holonomic Kaluza-Klein theory and
the nonholonomic model of sub-Lorentzian geometry
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The Kaluza-Klein theory is a geometric model of space-time where the base
manifold is 5-dimensional. The equations of geodesics are equations of motion of
acharged particle in the electromagnetic and gravitational fields. The Einstein and
Maxwell equations are solutions of a variational problem for the scalar curvature
field. Yet the problem of the physical meaning of the “fifth coordinate” is solved
by different authors in different ways. Yu.B. Rumer considered this coordinate as
the physical action. Classically it is considered as a length. Since the Kaluza-Klein
theory can include an arbitrary conversion constant in the metric tensor the
physical dimension of the “fifth coordinate” can also be arbitrary. However if we
do not include the conversion constant in the metric tensor the theory remains
correct and the physical dimension of the “fifth coordinate” is uniquely defined
(volt-second).

Asimilar theory can be constructed using nonholonomic constraints on the ve-
locity field of admissible paths. In this model the base manifold is 5-dimensional
and the distribution defining nonholonomic constraints is 4-dimensional. The
metric tensor of the distribution has the Lorentz signature. Therefore the causal
structure in this model is nearly the same as in the general relativity theory. We
consider the extension of the Schouten curvature tensor of sub-Riemannian
geometry. We also consider geometric questions related to the invariance of some
objects necessary for both models of space-time.
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Local attractors of the Cahn-Hilliard-Oono equation

Kulikov A. N.1*, Kulikov D. A.!
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One of the most famous nonlinear equations of mathematical physics can be
considered the Cahn-Hilliard equation [1]. Accounting for convection led to one
of its modified versions [3] (see also [2])

Up + Upppe + OUyy + au + bl(u3)m + ag(uz)x =0. (1)

Here v = u(t, x), b, b1, a, as are real constants. Moreover, a > 0, and of particular
interest is the case when a = 0, but as # 0. Usually, it is studied together with
periodic boundary conditions

u(t,x + 27) = u(t, x). (2)

Another choice of boundary conditions is also possible. For example, the
replacement of boundary conditions (2) by the Neumann conditions. From a
physical point of view, the case when u = u(t, z, y), but within the framework of
the report we confine ourselves to the case of considering the boundary value
problem (BVP) (1),(2).

Firstlet a > 0 and parameters a, b are chosen as follows

b= (m*+(m+6)*)(1+ve), a = m*(m+6)*, v==+1, 6 € (-1,1), € € (0, &),
m € N.

Then BVP (1),(2) in the vicinity of the zero solution has a one-dimensional
invariant manifold formed by spatially inhomogeneous solutions of BVP (1), (2).
The question of the stability of this manifold is investigated.

Butif m # 1 and, moreover

b= (m*+(m+1)%)(1+v1€), a = m*(m+1)>(14vee), vi+vi =1, ¢ € (0,5),
Vi1,V € R,

121


mailto:kulikov_d_a@mail.ru

then in this case the BVP (1),(2) already has a two-dimensional invariant manifold,
which is also formed by spatially inhomogeneous solutions. An answer is given
about the stability of solutions. In all such cases, asymptotic formulas are obtained
in power expansions £%/2. Let b = 5(1 + 11¢),a = 4(1 + vs¢). In this case,
asymptotic formulas are also obtained for solutions that form invariant manifolds,
but the asymptotic formulas for them differ from those obtained for m # 1.

A special version of the problem arises if a« = 0, but ay # 0 and b; # 0. Then
for

o= Oéi(l +V€), v==1, ar =+ (1 — b)/(gbl), €€ (O,Eo)

the BVP (1),(2) has a two-dimensional invariant manifold formed by solutions
periodic in ¢ and inhomogeneous in the space variable. Conditions are obtained
under which the invariant manifold will be a local attractor. At the same time, the
solutions belonging to such an attractor are unstable in the sense of Lyapunov’s
definition, but are orbitally stable.

The main results can be extended to the case of two space variables.

This work was carried out within the framework of a development programme
for the Regional Scientific and Educational Mathematical Center of the Yaroslavl
State University with financial support from the Ministry of Science and Higher
Education of the Russian Federation (Agreement on provision of subsidy from
the federal budget No. 075-02-2023-948).
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On strict monotonicity of the p-torsional rigidity over annuli
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In this talk, for d > 2 and % < p < o0, we analyze the monotonicity
behavior of the p-torsional rigidity of annular domains in R?, when the inner ball
moves towards the outer boundary. We employ the polarization method (for the
Dirichlet boundary conditions), the finer geometry of the torsion function, and
the shape calculus (for the mixed boundary conditions) to get the required strict

monotonicity.
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On complete controllability of some three- and four-level closed
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The presented work approaches complete controllability problem [1] for
several types of three-level and four-level quantum systems which are relevant to
up-to-date pieces of theoretical control landscapes analysis [2; 5]. In detalils, it
gains complete controllability conditions for three-level systems with two allowed
transitions between energy levels (e.g., A- and V-atoms), three-level systems with
three allowed transitions and both level and level-spacing degeneracies, and some
four-level systems with “chained” interaction Hamiltonian which corresponds
to the dipole type of interaction. These systems have been addressed before for
either exact or real-valued matrix elements in free and interaction Hamiltoni-
ans only [3-5], while the presented research maintains mathematical generality
by considering arbitrary complex valued matrix elements, which is crucial for
both obtaining fundamental properties of the considered systems and exploring
applied quantum control problems related with control landscape analysis.
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The sensitivity of topological foliations with topological integrable Ehresmann
connection is investigated. The study of the dynamical properties of topological
foliations was started by us with N.S. Tonysheva in [4].

R. L. Devaney [3] by a dynamical system means a cascade, and he says that
a dynamical system is chaotic if it has the following properties: 1) topologically
transitivity; 2) density of periodic points and 3) sensitivity to initial conditions.
Banks and others showed that sensitivity of a dynamical system follows from the
conditions 1) and 2). Taking this in account, R. C. Churchill in [2] introduced a
notion of chaotic foliations. We use a more general approach which was given in
[1], where a foliation (M, F') is called chaotic if (M, F') has a dense leaf and the
union of closed leaves is dense in M. Here a leaf L is closed if L forms a closed
subset in M, and L may be not compact. As we see, the concept of sensitivity is
inextricably linked with the concept of chaos, but in the works [4], [1] and others
this problem for foliations is not considered.

The object of our investigation is topological foliations (M, F) with a topo-
logical integrable Ehresmann connection on n-dimensional manifolds M. A
foliation (M, F') has an arbitrary codimension ¢ where 0 < ¢ < n. The integrable
Ehresmann connection is a g-dimensional topological foliation on M with some
additional properties. The notion of an topological integrable Ehresmann connec-
tion for the foliations (M, F') was introduced by us in [4]. Using the Ehresmann
connection we define a vertical-horizontal homotopy and prove its uniqueness.
The existence of vertical-horizontal homotopy allows us to determine a transfer
of the horizontal paths along the vertical ones. Applying vertical-horizontal
homotopy, we introduce the notion of sensitivity to initial conditions for the
investigated class of topological foliations.

One of the main results of this work is the following theorem.
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Theorem. Let (M, F') be a topological foliation of codimension g with topolog-
ical integrable Ehresmann connection on n-dimensional manifold M,0 < q < n.
If the foliation (M, F) is chaotic, then (M, F) is sensitive to initial conditions.

As examples we construct a countable family of chaotic topological foliations
on a non-compact 3-manifolds M using the suspension method.

The work was partially supported by the Russian Science Foundation (grant
no. 22-21-00304).
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Automorphisms of the semigroup C*-algebra for the free
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The report deals with the reduced semigroup C*-algebra C(.S) for the free
product S of a finite family of semigroups.
First we take a tuple of infinite sequences

Pl:(p117P21,---),---aPn:(pm,pzn,---) (1)

consisting of arbitrary prime integers py;, where k = 1,2,3,...andi =1,...,n.

Then, we take the additive semigroups of positive rational numbers QJISk,
1 < k < n, corresponding to the sequences of prime numbers in (1). These
semigroups are defined by

Qj;k: mGN,sEN}.

{plk--~psk

Next, we consider the free product of the semigroups Q}ﬁk_ x{k},1<k<n
which is denoted by

S = ((@1";l X {1}) % ... % (Q;ﬁ x {n}) U {0},

where 0 is the neutral element. Note that .S is a non-abelian semigroup with the
cancellation property.

It was proved in [1] that the reduced semigroup C*-algebra C(S) is an
inductive limit for the direct sequence of the Toeplitz-Cuntz algebras associated
with the tuple of sequences of prime numbers (1).

The Toeplitz-Cuntz algebra 7 O,, is the universal C*-algebra on generators
Uy, Us,...,U, subject to the following relations:

DUU, =1fork=1,2,...,n;
i) U;U; = O whenever k # [;
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Thus, we have the direct sequence of the Toeplitz-Cuntz algebras and its direct
limit
TO, —25 TO, -5 TO, 2 - CE(S),
where ¢y, : TO,, — TO,, : U; — UP* for every k € N.

Let L = (l4,...,l,) be a multi-index consisting of positive integers. We
construct the following diagram

TO, == TO, -2 ... C(S)
efl laf ieb
TO, —25 TO, —2 - Ci(S),

where, for each & € N, the morphism 0,% :T70, — TO, : U —> Uff
is the *-endomorphism associated with the multi-index L, and 0L is the limit
x-endomorphism of the C*-algebra C* ().

In the talk we shall discuss the following criterion formulated in number-
theoretic terms [2].

The limit endomorphism

oL . Cr(S) — Cx(S)

is an automorphism of the C* -algebra C}(S) if and only if, foreachi = 1,...,n,
eitherl; = 1 or every prime divisor of the integer l; occurs infinitely often in the
sequence P;.
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The study of viscoelasticity includes the analysis of the stochastic stability of
stochastic viscoelastic systems, their reliability, etc. The paper considers stochas-
tic linear longitudinal oscillations of a string with moving boundaries. The case of
a difference kernel makes it possible to reduce the problem of analyzing a system
of stochastic integro-differential equations to the study of a system of stochastic
differential equations. To estimate the expansion coefficients, it is proposed to
apply the statistical numerical Monte Carlo method.

Atpresent, reliability issues in the design of machines and mechanisms require
more and more complete consideration of the dynamic phenomena that take
place in the designed objects. The widespread use in technology of mechanical
objects with moving boundaries necessitates the development of methods for
their calculation. The problem of oscillations of systems with moving boundaries
is related to obtaining solutions to integro-differential and partial differential
equations in time-variable domains [1-17]. Such tasks are currently not well
understood. Their peculiarity is the difficulty in using the known methods of
mathematical physics, suitable for problems with fixed boundaries. The com-
plexity of the solutions obtained is explained by the fact that up to now there
has not been a sufficiently general approach to the analysis of the features of
the dynamics of such systems. In connection with the danger of resonance, the
study of forced oscillations is of great importance here. Attempts to investigate
this process have been made, but the results obtained are limited mainly by a
qualitative description of dynamic phenomena [5; 14; 15; 17]. In addition, it is
recognized that deterministic modeling of systems cannot be adequate for some

130


mailto:vladlitvinov@rambler.ru
mailto:kristinalitvinova900@rambler.ru

types of problems, so it is necessary to switch to probabilistic-statistical, where
there are random variables, stochastic fluctuations. When solving here, mainly
approximate methods are used [1; 2; 6; 8; 10], since obtaining exact solutions is
possible only in the simplest cases [9].

If the damping of transverse vibrations is mainly due to the action of external
damping forces, then in the case of longitudinal vibrations, the damping is mainly
affected by elastic imperfections in the material of the vibrating object [1; 2; 6;
8-10]. The study of viscoelasticity includes the analysis of the stochastic stabil-
ity of stochastic viscoelastic systems, their reliability, etc. The paper considers
stochastic linear longitudinal oscillations of a string with moving boundaries. The
case of a difference kernel makes it possible to reduce the problem of analyzing
a system of stochastic integro-differential equations to the study of a system of
stochastic differential equations. To estimate the expansion coefficients, it is
proposed to apply the statistical numerical Monte Carlo method [16].

Keywords: stochastic longitudinal oscillations, vibrations of a string, moving
boundaries.
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Operator approach for solving stochastic equations
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The paper deals how with using the operator approach get an idea stochastic
differential solution equations using the functional integral.

Stochastic heat equation. We consider the following Cauchy problem for
stochastic differential equation of heat type:

d¥,(t)(q) = a(¥u(t))"(g)dt + (aV (q) — %qz)%(t)(Q)dH

+\/§q\11w(t)(q)dw(t), ¥y, (0,9) = #o(q),

where g € C(R') and ¢ is bounded. ¥,,(t)(q) is a random function, defined
for all positive ¢, g is an element of the configuration space, and w is Wiener’s
measure on a probability space; the elements of the probability space are denoted
by the symbol w, i.e w is continuous functions on [0, ¢].

The following theorem is true, and it gives the presentation of the solution to
this problem with using the functional integral (Feynman-Katz formula).

Theorem 1 Letthe functionV is continuous and bounded, function g is bounded
and two times differential and its first and second derivatives are also bounded.
Then when o« = 1 the solution of the Cauchy problem for the stochastic heat
equation exists and can be represented as follows:

vl = [ e{ [ Viareonr - [ Jarewrar

X exp {\/5/0 (¢ + £(T))dBw(T)} @o(q + &(t))wo,¢ (dS).

Here C))[0, ] is the space of continuous functions, vanishes in zero, wy ; is the
Wiener's measure on this space.
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The proof of this theorem is based on the application of the Tto formula to the
integrand.

The resulting solution can be analytically continued to the appropriate area
in such a way that we obtain solutions of the Belavkin equation.

Operator approach. Interesting is the method of obtaining the same repre-
sentation of the solution based on considering the right side of the equation from
the Cauchy problem (1) as a random operator.

We consider a stochastic heat equation with respect to the random functions
¢ of real variables taking values in space L (R%):

dip(t) = (o))" dt + V (q)p(t)dt — ngs@(t)dt + \/ng(t)dW(t)-

The random operator on the right hand side of the equation, applied to the
function ¢(t), will be denoted by the symbol A(t).

The solution to the Cauchy problem is given by the two-parameter family of
random operators F(t1,t2), t1,t2 € R, t; < t5, acting in space Lo (R%).

(F(tr, t2)h) (q) = / (h(g + £(t2)))
Co([t1,t2]

<exp{ [ Vg s [ G+ e)ar)x

X exp{l 2 \/E(Q“F5(7—))dB(T)}wt17t2(d€)'

h is an element of the space Ly (R!).
In the case when these operators are selfadjoint, the following theorem holds.

Theorem 2 For anyt; € [0,+00) and any twice differentiable function h with
the bounded derivatives, the function ), defined by equality 1 (t3) = F(t1,t2)h

(t > t1), is a solution to the Cauchy problem for the stochastic difterential
equation with initial data (t1, h).

Since the equation is stochastic, there are difficulties that are not present in the
non-stochastic case. These difficulties will be discussed in this paper.
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We investigate the global stability and bifurcation of discrete-time mathematical
models of Tuberculosis. First we study a SEI mathematical model of TB with
endogenous or exogenous infection without treatment. Then we extend our study
to SEIT mathematical model with treatment with endogenous or exogenous
infection.

Tuberculosis (TB) is an airborne infectious disease that transmits between in-
dividuals via droplets with TB bacilli, that is, Mycobacterium tuberculosis. The
bacteria are put into the air when a person with active TB infection in the lungs
or throat coughs, speaks, or sings, and nearby people may breathe in the bacteria,
thus becoming infected. Once someone is exposed, TB bacteria can live in the
body, human or animal, for years if not decades without any symptoms, called
latent TB infection. In fact, many people who have latent TB never develop the
infectious disease, but they still test positive, though not infectious, meaning they
cannot spread TB bacteria to others. TB bacteria turns into active infection if the
immune system cannot stem the growth rate.

Common symptoms of tuberculosis are chest pain, weight loss, fever, a persistent
cough that may contain blood, etc. Nevertheless, active TB infection can be
treated by prolonged use of antibiotics. We conclude the SEIT model is sufficient
to describe the transmission pattern of tuberculosis. However, the reality is that
while models assume we have access to complete data on TB cases, every active
infection is not reported. Moreover, since latent TB carriers exhibit no symptoms,
their exact number is far more difficult to estimate, and treatment often goes
half-done because of its length or duration. For decades it has been assumed that
postprimary tuberculosis is usually caused by reactivation of endogenous infec-
tion rather than by a new, exogenous infection. However, Exogenous reinfection
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appears to be a major cause of postprimary tuberculosis after a previous cure in an
area with a high incidence of this disease. This finding emphasizes the importance
of achieving cures and of preventing anyone with infectious tuberculosis from
exposing others to the disease.

The SEI Compartmental Model (with no treatment) The host population is
divided into the following epidemiological classes or subgroups: susceptibles (.5),
exposed (F, infected but not infectious), infectious (7).

N(t) = S(t) + E(t) + I(t) denotes the total population. Let A be the recruitment
rate of the population, d be the natural death rate, v be the death rate caused by
the disease, and the mean exposed period is i where o > 0 is the rate of loss of
latency. The parameters «, vy and d, verify 0 < o < 1,0<y<1,0<d < 1.
Assuming there is exogenous reinfection, the disease dynamics may be repre-
sented by the following system of difference equations

St+1)=A+1—p —d)S@) + pei1(I(t)/N(t))S(t) + r1E(t)
+roI(t)

E(t+1) = u1(12— e1(I(t)/N(1)))S(t) + w2 (1(t) /N (1) E(t) (1)
+(1—pe—d—a—r)E()

It +1) = aB(t) + p2(1 — 02 (I(t) /N (1)) E(t)
+(1 —d—y—r2)I(t)

where 7; and 9 are the rate of recovering people from Exposed and Infectious.
The fraction of susceptibles that escapes the infection at time ¢ is 11 (I(t)/N)
where ¢1(I/N) is the escape function, and u1, 0 < p; < 1 is the level of
infection. The contact between susceptibles and infected individuals is assumed
to be a Poisson process given by ¢;(I(t)/N) = e #IW/N 5. > 0, = 1,2,
where j; is called the transmission coefficient which will be used here. The term
uaw2(I(t)/N(t)) models the exogenous reinfection rates with p» representing
the level of reinfection, 0 < po < 1.

We study the existence and unicity of both Disease Free Equilibrium (DFE) and
Endemic Equilibrium (EE), their local and global stability. Next we consider the
SEIT model in which Infectious people are treated. We proof the same properties
of DFE and EE. Numerical examples are given to illustrate these theoretical results.
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By continuum we mean a compact connected metric space. A dendriteis a
locally connected continuum that does not contain subsets homeomorphic to a
circle. A finite graph is a continuum that can be presented as the union of finitely
many arcs any two of which are either disjoint or intersect only in one or both of
their endpoints.

Let X be a dendrite or a finite graph, f : X — X be a continuous map.

A nonempty set M in X is called to be minimal under f if it is closed, f-
invariant and does not contain any proper subset satisfied these conditions. A
periodic orbit gives the simplest example of a minimal set. It is known that a
compact f-invariant set Y in X contains some minimal set (see, e.g., [3]).

We say that M is totally minimal under f, if M is minimal under f" for all
n>1.

If M is not minimal for some n > 2, then there are pairwise disjoint compact
subsets M; C M, uniquely defined up to the order, with M = My U M; U ... U
M1, suchthat k > 2isadivisor of n, f(M;) = M;1(mod k) and M; is minimal
under f* foreach 0 < i < k — 1 (see, e.g., [1; 3; 4]). In this case we say that
M has a periodic decomposition. A number £ is called a length of a periodic
decomposition of M. We note that M has at most one periodic decomposition of
alength k.

We say that a minimal set M is a relatively totally minimal under f if there
is a periodic decomposition { My, My, ..., My_1} of M such that M; is a totally
minimal set under fk forevery0 <i <k —1.

We note that there are minimal sets that are neither totally minimal under
f nor relatively totally minimal under f. Adding machines on the set of all one-
sided infinite sequences gives us the fundamental examples of such minimal sets
(see, e.g., [1;2]).

In the report we study a relation between the structure of infinite minimal
sets and topological entropy of continuous maps on finite graphs and dendrites.
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This talk summarizes a series of studies [1-7] of the dynamics of nonholonomic
systems with varying mass distribution due to the prescribed periodic motion
of some structural components (rotor, point masses etc.). Depending on the
choice of the law of variation of mass distribution, such systems generally exhibit
a large variety of behavior, both regular and chaotic. In addition, it turns out
that nonholonomic systems are one of the simplest mathematical models of
mechanical systems exhibiting a phenomenon known as unbounded speedup,
which is due to redistribution of internal masses. In this paper, for a certain class
of nonholonomic systems (including the Chaplygin sleigh, the Suslov system and
Roller Racer) we find a criterion which must be satisfied by the periodic variation
of mass distribution for the existence of speeding-up trajectories.
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The main goal of this note is to establish the uniqueness and existence of a
solution to the Cauchy problem for a second-order hyperbolic equation with
periodic coefficients.

Keywords: hyperbolic equation, Cauchy problem, periodic coefficients, unique-
ness and existence.

Let us consider a triangular region G := AAPB on the plane (z, t), bounded
by the base AB := {t = 0} and two characteristics PA := {z + ¢ = 0} and
PB:={zx—t=0}.

Consider as t — oo the following Cauchy value problem:

ug (2, t) = (p(2) uz (2, 1)) + q(@) u(z, 1) =0, = €R, >0, (1)
u(xat)‘t:() = 07 Ut(l',t)‘t:() = 0) (2)
where the functions p(z) and ¢(x) are periodic with period 1, and
p(x+1) =p(x) > const >0, g(z+1)=gq(z)>0.

In addition, the functions p(z), ¢(x) are continuous or have a finite number of
discontinuities of the first kind on the period.

Theorem 67.1 If the functionsu(z,t) and u.(z,t) vanish along the base AB :=
{t = 0} of a triangle G := ANAPB with sides PA := {x +t = 0} and PB :=
{x — t = 0}, then the solution u(x,t) of the Cauchy problem (1), (2) exists and
u(x,t) = 0 throughout the triangle G := ANAPB.
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We note that the first results on the asymptotic expansion of solutions of
the Cauchy problem for a hyperbolic equation with periodic coefficients were
announced in [5] in the form of brief communications, and full proofs are given in
papers [1] and [2], as in the case of a positive operator Hill Hy > 0, and in the case
when the left end of the spectrum o (Hy) of the Hill operator Hj is non-positive.

Similar questions for solutions of the initial-boundary value problem on the
semi-axis were announced in the form of short communications in [3], and full
proofs are given in [4].
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We consider the asymptotic behavior (as ¢ — 00) of solutions to an initial
boundary value problem for a second-order hyperbolic equation with periodic
coefficients on the semi-axis. The main approach to studying the problem under
consideration is based on the spectral theory of differential operators, as well as
on the properties of the spectrum o (Hj) of the one-dimensional Schrodinger

operator
d d
Hy =2 £
0 i <P(I)dm> +q(7)

with periodic coefficients p(z) and ¢(z).

Keywords: asymptotic behavior, hyperbolic equation, initial-boundary value
problem, periodic coefficients.

Consider as t — oo the following initial-boundary value problem

uge(x,t) — (p(x) uz (2, ) + q(z) u(z,t) =0, x>0,t>0, (1)
w(z,t)t=0 =0, w(x,t)|t=0 = f(x), = >0, 2
w(z,t)|z=0 =0, t>0, (3)

where p(z) and ¢(x) are 1-periodic functions, p(z + 1) = p(z) > C >0, q(z+
1) =q(z) 2 0.
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Here, we assume that the functions p(z) and ¢(z) are continuous or have
a finite number of discontinuities of the first kind on the period, f € C§°(R),

supp f C [0,1].

The present note is devoted to the asymptotic behavior as ¢ — oo of solutions
to the initial-boundary (mixed) problem for a one-dimensional second-order
hyperbolic equation with periodic coefficients p(x) and ¢(z) on the semi-axis
x> 0.

Theorem 68.1 Ifthe one-dimensional Schrédinger operator (Hill operator) Hy
is positive, p(z) > C > 0, q(x) > 0, then there is a compact operator

M : L?[0,1] — L?[0,1]

such that forx € [0,1] andt > 0 the solution to the initial boundary value
problem (1)-(3) has the form

u(z, t) = uy(z,t) + v(z, t),
where u; (x, t) is the solution to the following mixed problem
uge(x,t) — (p(z) up(z,t))s + q(z) u(z,t) =0, =z e€l0,1],¢t>0,
=0, wu(z,t)i=o=M[f(z)], x€]0,1],

while the function v(z,t) forx € [0, 1], t > 0 satisfies the estimate
C
jo(a,8) < SN PR

the function u (x,t) has the form

up(x,t) = Z b, fu v(z,n,)sin(y,t);
v=1
herev(x,n,) is the normalized eigenfunction of the following eigenvalue prob-
lem:
{ —(p(@)y) +al@)y =k, 0<z<l,

y(0) = y(1),
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corresponding to the eigenvalue~?2,

1
fV:/o v(z,n,)f(§)dE v=1,2,...,

f. are the coefficients of the expansion of the function f(z) in the Fourier series
in the system {%(x, n,)}32,, b, are some constants of order o(+) asv — oco.

In the form of brief communications, the main results of this note have been
partly presented in [3], and the full proofs are given in [4].

In the papers [1] and [2], similar questions were considered for the Cauchy
problem with initial conditions, as in the case of a positive Hill operator Hy > 0,
and also in the case when the left end of the spectrum o (Hj) of the operator Hill
Hj is non-positive.
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On dynamics of large particle systems with interaction in
different fields

Melikian M. V.
Lomonosov MSU, MIPT

mv.melikian@gmail.com

We consider countable systems of point particles under various random and
deterministic external influences on real line. Particles are of unit masses with
coordinates {x, }rez and velocities {vy }xez. The dynamics of the system is deter-
mined by the formal Hamiltonian (the total energy of the system):

S HE@ —ka)?+ Y St — () — (k= ),
kez k,jceZk#j

where parameters a > 0, ag; > 0, (V)kj = ay; — linear operator in some
linear space (in each model the conditions will be dealt with separately). The
equilibrium position (minimum energy) willbe z;, = ka, v =0, k€ Z.In
this case it will be convenient to move on to new variables — deviations: ¢ (t) =
T — k‘a, pk(t) = qk(t) = 'Uk(t).

One of the models under consideration is determined by hamiltonian:

H(a()p(0) = 5 S0 +5 3 alk = far(0)a; 1),

kez k,j€Z
where the real-valued function a(k) satisfies three natural conditions (see [2] for
details).

We assume also that the initial conditions {g;(0)},, {p,;(0)}; lie in Hilbert
space L:

L={¢Y=1(q,p): q€l2(Z), pclxZ)}.
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Suppose, moreover, that on particle with a fixed number n € Z external force
f(t) acts. Then the motion of the system is described by the following infinite
ODE system:

Gj ==Y alk—j)ax+ f(t)3jn, jEL. (1)
k

We assume that f(t) is a stochastic process satisfying the following conditions:

A1) real-valued centered stationary in a wide sense process with continuous
covariance function.

A2) the support of the spectral measure of the process f(t) p is isolated from
the plus or minus “of the root” of the set E = [ey; e2], where e; > 0 (see [2] for
details), i. e. there is an open set U containing +[,/e1, \/e2] such that u(U) = 0.

Theorem. Consider conditions Al) and A2) and ¥(0) = (¢(0),p(0)) € L
hold. Then there is random process 7(t) = (¢°°(t), p°°(¢)) such that the following
conditions hold:

1. n(t) is a solution to the system (1) with some initial conditions;

2. the difference ¥ (t) — n(t) converges to zero as t — -+oo component-by-
component with probability one, and the trajectories of the process are con-
tinuous and infinitely differentiable a.s.;

3. each component of 7)(t) is a stationary process, satisfying condition A1) and
P(n(t) € L) = 1forallt > 0;

4. there exist positive constants ¢, ¢z and 0 < 7 < 1 such that

Dqr(0) < clr‘”_kl, Dp(0) < cor ™ EL

5. limy, oo EH (¢(t)) = EH (1(0)) + H(¥(0)).

Generally speaking, this assertion does not imply the weak convergence of
¥ (t) components to the corresponding 7(0) components. But additional strict
stationarity of process f(t) is sufficient condition for that.

References

1. Lykov A. A., Malyshev V. A., Melikian M. V. Resonance in Multicomponent Linear
Systems // Moscow University Mechanics Bulletin. — 2021. — Vol. 76, no. 3. — P. 88—
93.

2. Lykov A. A., Melikian M. V. Infinite chain of harmonic oscillators under the action of
the stationary stochastic force // Markov Processes and Related Fields. — 2022. —
Vol. 28, no. 3. — P. 451-475.

148



3. Lykov A. A., Melikian M. V. Long time behavior of infinite harmonic chain with [
initial conditions // Markov Processes and Related Fields. — 2020. —Vol. 26, no. 2. —
P. 189-212.

149



Semigroups of operators associated to stochastic processes and
their generators

Melnikova I. V.'*, Bovkun V. A.1**
!Ural Federal University, Ekaterinburg
* Irina.Melnikova@urfu.ru

" Vadim. Bovkun@urfu.ru

Awide class of processes arising in various areas of natural science, economics
and social phenomena can be mathematically described by stochastic differential
equations (SDE). The most studied is the class of diffusion SDEs with Wiener
processes being the randomness sources. The solutions of such equations, due
to the continuity properties of Wiener processes have continuous trajectories.
Therefore, modeling based on diffusion-type equations is most suitable for de-
scribing processes that do not have jumps. Simulation based on Levy processes
allows one to study along with continuous, jump processes.

Levy processes are an important class of homogeneous Markov processes.
The Markov and homogeneous properties lead to the fact that, along with transi-
tion probability P, the key characteristic of Levy processes is the semigroup of
operators.

The talk is devoted to the study of properties of semigroup operators

UR)f(z) = - f(y)P(0,z;t,dy), = e€R"t>0,

acting in the space Cy(R") or Lo (R™).

The semigroups associated with basic Levy processes, shift processes, Wiener,
Poisson, compound Poisson and symmetric stable processes are considered in
the form

U(t)f(m) = <f()7 p(07$;t, )>7

where transition density p is the generalized function on space Cy(R). It is shown
that the generators of the Levy semigroups are operators with kernels from the
space S'(R?"). The proof of this fact is based on the property of Levy process
generators to be pseudo-differential operators [1].
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Methods for description of open quantum system dynamics
based on the thermodynamical approach

Meretukov K. Sh.'*, Teretenkov A. E.!

! Faculty of Physics, Lomonosov Moscow State University

" violblink@gmail.com

Because of the correlations between the system and the environment in open
quantum systems, when solving the evolution equation we obtain information
related not only to the system, but to the environment as well. In order to separate
information related to the system from information related to the environment,
we use the method of projective operators, in particular the Nakajima-Zwanzig
method.

We will approximate the exact density matrix by its quasi-equilibrium value.
Assuming that the system is described by a set of variables { P,,,} we apply the
maximum entropy principle from thermodynamics of nonequilibrium systems
and obtain the form p,..;. We consider two kinds of entropies: Gibbs entropy and
Renyi entropy.

We consider a two-level system in an external field, which interacts with an
external reservoir. In the resulting evolution equation we make a “dissipative
Wick’s turn” when performing the Bogolyubov-van Hov overstretch t — A~2¢.
This turn is done so that the growing exponents in the evolution equation become
delta functions in the Bogolyubov-van Hov limit A — 0.

Our results converge to the results obtained strictly in the same limit.
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The effect of heat generation on the stream in the pipe and
locking the flow

Minenkov D. S.'?*, Votiakova M. M.'**
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The motion of a liquid in a three-dimensional vertical pipe is considered.
Based on Euler’s equations, Darcy’s law is valid for some modes. Then the problem
is reduced to a one-dimensional system for density, pressure, and longitudinal
velocity (averaged in the cross-section). We consider boundary problem with
known pressure values at the beginning and the end of the pipe, and temperature
value at the beginning of the pipe. This problem simulates the effect of overheating
of the liquid at the end of the pipe: when the heat release increases above a certain
threshold, the density turns to zero, and the temperature goes to infinity, as well
as the effect of locking the flow in the end of the pipe (the velocity is zero). These
effects occur both in the ideal gas approximation and for the Van der Waals model.
Similar effects in the case of an ideal gas was observed in the work [2], where the
system was solved for pressure, velocity, density and entropy. Obtained analytical
and numerical results fit the experimental data from [1].

The authors are grateful to V. G. Danilov and A. A. Kovalishin for valuable
discussions. The work was carried out in the frame of the government program
(state registration No. 123021700044-0).
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Attractors with non-invariant interior

Minkov S. S.1*, Okunev A. V.!, Shilin I. S.!
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The properties of generic endomorphisms are somewhat different from the prop-
erties of generic diffeomorphisms. It is conjectured that C! -generic diffeomor-
phisms (of a connected manifold) whose non-wandering set has a non-empty
interior are transitive. In contrast, for endomorphisms there are known open
examples of attractors with non-empty interior for non-transitive maps.

We build on the ideas of these examples to show that the interior of the
nonwandering set or attractor can be not only non-empty, but also non-invariant,
and in a persistent way. That is, we construct an open set of maps that take a point
in the interior of the attractor to the boundary of it. This is another contrast with
diffeomorphisms, as for a diffeomorphism the interior of an invariant compact set
is always invariant. In the known examples of attractors with non-empty interior
the interior also is invariant.

We focus on the smallest dimension where a robust example of this type is
possible. However, the main result is also valid for any manifold of dimension
higher than 2.

Our initial approach was to first construct a skew product over a circle exten-
sion with the required properties, and then perturb it in the class of endomor-
phisms and use the technique of Ilyashenko-Negut to regain the structure of a
skew product and prove that the non-invariance properties are persistent. Later
we came up with a simpler geometric argument. Nevertheless, the “main” map in
the proofis a skew product.
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On Optimization of Coherent and Incoherent Controls in One-
and Two-Qubit Open Systems

Morzhin O. V.

Department of Mathematical Methods for Quantum Technologies, Steklov
Mathematical Institute of Russian Academy of Sciences (Moscow);

Quantum Engineering Research and Education Center, University of Science and
Technology MISIS (Moscow)

morzhin.oleg@yandex.ru

Control of quantum systems, e. g., individual atoms, molecules is an important
direction in modern quantum technologies [8]. Often open quantum systems
with Markovian dynamics are described via the Gorini-Kossakowski-Sudarshan—
Lindblad (GKSL) master-equation, and controlling such a system is modelled in
terms of coherent control entering in the system’s Hamiltonian. However, there
is known the approach (see the fundamental works [5; 6] and the subsequent
works, e. g., [1; 3; 4; 7]), where such a system’s environment can be considered
as a resource via introducing incoherent control in the superoperator of dissi-
pation and also in the effective Hamiltonian. The talk considers some one- and
two-qubit open quantum systems whose dynamics is described via the GKSL
master equation in the weak coupling limit (WCL) approach, and coherent u and
incoherent n controls are used:

dpt) _ . _

R —i[Ho + Heftn(r) + Huey, p()] + Loy (p(1)),  p(0) = po, (1)
where H), Heffm(t), and H, u(t) are, correspondingly, some free, effective, and inter-
action Hamiltonians; £,,(+)(p(t)) is the WCL type’s superoperator of dissipation
acting on p(t). Consider N = 2 and N = 4, i. e., correspondingly, for one- and
two-qubit cases.

Based on the approach considering both coherent and incoherent controls
in the GKSL type’s quantum systems, some one- and two-qubit systems of this
type and various control objectives are considered, the Krotov method, one- and
two-step gradient projection methods, etc. are adapted [2-4]. In regard to using
incoherent control as a recourse in addition to coherent control, the talk shows
the different cases of the numerically optimized controls.
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On the asymptotic stability of the hybrid systems

Mulyukov M. V.

Perm State National Research University

mulykoff@gmail com

A continuous-discrete system of functional differential equations (also called
hybrid) is a system whose state is described by two groups of interrelated variables:
some variables that are being functions of continuous time satisfy differential
equations; others are being functions of discrete time satisfy difference equations.

Hybrid systems are applied in studying technical objects with impulse and
digital control, as well as in problems of economic dynamics models [4].

Itis natural to search for the solution of hybrid systems step by step, integrating
the system on each interval, but one can’t study the solution asymptotic properties
by this method, so the problem of stability for such systems is actual.

Various methods are used to study the stability of hybrid systems. The ap-
proaches based on the Lyapunov method are applied in papers [3; 4] the fixed
point principle is applied in paper [2], the Azbelev’s W-method is applied in
papers [1].

Exact effective coefficient criteria for asymptotic stability can be obtained
for hybrid systems in which a continuous subsystem with continuous time is a
system of ordinary differential equations [5; 6].

As far as the author of the current paper knows, there are no exact effective
coefficient stability criteria for hybrid systems in which the subsystem with
continuous time is a system of delay differential equations with. Consider the
Cauchy problem for an example of the hybrid system of this class.

z(t) + ax(t — 1) y(n), tenn+1),
t , —1,0),
2(t) = v(t), te[-1,0) e 0
y(n) = —bw( )
z(0) =
where a,b,z9 € R, Ny = {0,1,2,...}, the initial function ¢ is assumed to be

summable.
System (1) is called asymptotically stable if lim;_, . (t) = 0 for any ¢ and x.
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Let’s introduce the operator S that acts in space C|0, 1]:

(Sx)(r) =2(1)(1 —br) — a/ x(s) ds.
0
Consider the equation
w—>b+ (a+be " =0. (2)

for the variable p.
Theorem. Supposea # 0. Then the following statements are equivalent:
e system (1) is asymptotically stable,
e all eigenvalues of the operator S lie inside the unit circle,
e theinequality |u| > |a| holds for any root of equation (2).

This work is supported by the Russian Science Foundation, Project no. 22-21-
00517.
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Half-space Dirichlet problem with summable boundary-value
functions for elliptic equations with general-kind nonlocal
potentials

Muravnik A. B.
RUDN University

amuravnik@mail.ru

The Dirichlet problem with a summable boundary-value function for the equation

0?u
Zany Zakux+hk7 y) + 82(;vy) 0

is considered in the half-space R™ x (0, o0), where m and n are positive integers,
ai,...,a, are nonnegative constants, and hy := (hg1,...,hgn), k € 1,m, are
vectors from R” with real coordinates.

Under the assumption that

m m
s
max |hy| max gak, gak < =,
kel,m =1 =1 2

we construct a solution, express it by a Poisson-like integral representation, prove
its infinite smoothness outside the hyperplane {y = 0}, show that it uniformly
decays (with all its partial derivatives with respect to all independent variables)
asy — 0, and estimate the rate of this uniform decay.

This work is supported by the Ministry of Science and Higher Education of
the Russian Federation (project number FSSF-2023-0016).
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On classes of holomorphic functions in tube domains

Musinl. Kh.
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Let C be a proper open convex cone in the n-dimensional real space R" with
vertex at the origin, b be a convex continuous positively homogeneous function of
degree 1 on C. In the talk there will be presented new and recent results devoted
to description of the strong dual to some spaces of functions on the unbounded
closed convex set

U(b? C) = {g €ER": 7<€7y> < b(y)a Vy € C}

in terms of the Fourier-Laplace transform of functionals. Some of them develop
and complement well-known results of V. S. Vladimirov and J. W. De Roever on
this topic.

Here we present a small extension of the result of V.S. Vladimirov from [1,
§10.5]. Let k € C(R") be such that for {,n € R™

k(E+m) < OO+ [IED™ k),

where C and N are positive constants. Let L2 (U (b, C')) be a space of measurable
functions f with support in U (b, C') such that

1712, = / () ()2 der < oo

U(b,C)

Let By ;, be the space of all distributions v € S’(R™) which are Fourier transforms
of functions belonging to L (U (b,C)), i.e., u € S'(R") is in By, if there exists
g € L2(U(b,C)) such that u = F[g] (we use a notation from [1]). The space By j,
is endowed with the norm [|u||x) = ||F " |l2,x = [|g|2,%- Let H2 1 (T¢) be a space
of functions f holomorphicin 7c = R" 4 iC with the norm

1f (@ + i)l k)
eb(y)

p(f) = sup

yeC
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Theorem. f € Hop(Tc) ifff(2) = [ g(€)e&* d¢, » € To, where
U(b,C)
g < Bng.
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The problem of interpolation in the preimage of a convolution
operator
Napalkov V. V.'*, Nuyatov A. A.!
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The conditions for the multipoint de la Vallee Poussin problem to have a
solution are found at the preimage of a convolution operator when the zeros of

the characteristic function and nodal points that are zeros of an entire function,
are inside corners of the complex plane.
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Hardy type inequalities with remainders

Nasibullin R. G.
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The report is devoted to Hardy type inequalities with remainders. The proofs of
these inequalities are based on one-dimensional inequalities. One-dimensional
inequalities are the analytical basis for solving geometric problems. We will
provide a brief overview of the results in this direction.

More precisely, Hardy type inequalities with an additional term are considered
for compactly supported smooth functions in convex domains. Constants in these
multidimensional inequalities will depend on the geometric characteristics of
the regions, for example, such as the volume, diameter or inner radius. The Bessel
functions and their properties are used.
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Reconstruction by modules of measurements of a vector-signal
in finite-dimensional and infinite-dimensional spaces

Novikov S. Ya.
Samara University
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There is a situation in many applied researches: we have a system of so-called
measuring vectors ® = {¢;}¥ | in Euclidean or unitary space H”. The researcher
has access to the measurement results of the unknown vector-signal x in the form
of modules of scalar products |(x, ¢;)|, the phases (or signs) of these products
are unknown. Is it possible to restore the vector x ? Since the modules of the
scalar products do not change by passing from the vector x to the vector h x with
|h| = 1, a factorization is performed beforehand for a neat formulation of the
problem . Let T = {h € H : |h| = 1}. The factor space H” /T is introduced as
a set of equivalence classes: x ~ vy, if there exists h € T : x = hy. Thus, the
problem arises of vector reconstruction from modules of measurements. Firstly
we formulate the reconstruction problem as a problem about the property of a
system of measurement vectors.

Definition. A family of vectors ® = {;}; in R” (or C”) does the recon-
struction by modules of measurements (RMM), if for any x,y € R” (or CP),
satisfying |(x, v;)| = [{y, ;)| foralli = 1,..., N, we have x = cy, where ¢ = +1
for R (and ¢ € T for CP.)

This definition can be formulated as a property of injectivity of the nonlinear
operator:

A:HP /T = RY, (AX))(n) := |(x,00)]%, n=1,...,N.

It's known that there are 2D — 1 vectors in RP, which ensure such reconsruc-
tion. These vectors may be received by using Vandermonde matrices in order to
construct systems of vectors ® = {¢;}¥ | in RP with full spark for any N > D.
We recall that spark of the system ® is the smallest number of linearly dependent
vectors of the system. For the system with full spark spark () = D + 1, i.e. each
subsystem of D vectors of the system ® consists of linearly independent vectors.

The question about the minimal number of vectors to ensure the reconstruc-
tion in CP is still open.
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Some applied problems required investigation of the possibility of signal re-
construction by norms of its projections on subspaces, for example, the twinning
problem known in crystallography.

Definition. The family of subspaces {W;} I, in H” with the corresponding
orthogonal projectors {P; };V::L does reconstruction by projections (RP), if for
arbitrary x, y € H” such that || P;x|| = || P;y| forallj = 1,..., N we havex = cy
for some |¢| = 1.

Some results in this area will be represented in the talk.

In the third part of the talk an infinite dimensional version of the reconstruc-
tion will be represented. We'll consider real space /5.

Definition. The family of vectors ® = {,} ;c s does (RMM), if equalities

[(pj,x)| = [{¢;,y)| forall j,

for arbitrary x,y € ¢2 provide equality x = +vy.
Some results from the finite dimensional space have analogous also in infinite
dimensional space, but at the same time there are many differences.

The work performed under the development program of Volga Region Mathe-
matical Center (agreement no. 075-02-2023-878).
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Miura-like transformations of nonlinear lattices and inverse
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Since the classical works of Kac, van Moerbeke and Moser, the inverse spectral
problems for operators generated by possibly infinite band matrices (we call
them band operators; in particular, the Jacobi operators belong to this class) have
been widely applied to the integration via Lax pair formalism of certain nonlinear
dynamical systems (nonlinear lattices). Here we consider a version of the inverse
spectral problem method for band operators, where a key role is played by the
moments of the Weyl function (or Weyl matrix) of a given band operator, which
are used for unique reconstruction of the latter, see [1-3].

In the study of nonlinear integrable equations, an important role is played
by various Bicklund-Miura type transformations between them. In [2; 3] we
found that a discrete Miura transformation, which relates the Volterra and Toda
nonlinear lattices to each other, can be easily described in terms of the above
mentioned moments (in particular, such description allows one to establish
a bijection between the classical semi-infinite Volterra lattices and the semi-
infinite Toda lattices characterized by positivity of Jacobi operators in their Lax
representation).

Here we discuss similar issues for the semi-infinite Bogoyavlensky lattices

BL1(p):
da. P P
% = a4 Hai+j - Hai—j ;
j=1 j=1
and BL2(p):

db;
o =l D b= by |

Jj=1 Jj=1

for some fixed p > 1.
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The Lax operators for both these lattices are band operators which have a
special structure: they contain only two nonzero diagonals, see [3] for details. Also,
in the finite lattice case, due to the special structure of the moments corresponding
to the finite Lax operators, some non-standard first integrals for BL1(p) and
BL2(p) were found.

Also we consider the non-Abelian Volterra and Toda lattices (i. e. the lattices
with matrix or operator elements) and discuss a similar description of a discrete
Miura transformation between them. As in the classical case, such description
allows one to establish a bijection between these two classes of non-Abelian
systems.
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Periodicity and different systems of co-ordinates
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The z = f(p) function is regular in some open G area, (4,0) € G,(0,0) €
G, A > 0. We define the C setfromthe C; = {(p, z) : z = f(p)} equality. We can
consider a new center of co-ordinates in the (A, 0) point (with the new w complex
variable). In the first fact by definition z = fo(w) = f(w + A); the z = fo(w)
equation is the equation of the same C/ set in the new co-ordinates. Itis obviously,
for the reverse f, '(z) = w, f~'(z) = p functions we obtain the f, ' (z) + A =
f~(2) equality, (with help p — w = A). We get df, ' (z)/dz = df ~'(z)/dz for
wide class of the f(p) functions. For the C’} ={(p,z) : z = df(p)/dp} set we
obtain the df; ' (2)/dz = df ~'(z)/dz equality.

We use, that the same analytical df, *(z)/dz,df ~'(z)/dz expressions take
place only for the same analytical dfs(z1)/dz1, df (21)/dz1 expressions of the z =
dfs(w)/dw,z = df (p)/dp functions, if p = w, [1,2,3], (the fact is obvious, if
the p, w variables are marked by the single p = w = z; letter). We can use, that
z =df(p)/dp = dfz(w)/dw for the (-)p = (-)w points, when p = w+ A. The same
analytical dfs(z1)/dz1,df (21)/dz1 expressions take place only for the periodic
df (p + A)/dp = df (p)/dp function, if, for instance, df (p)/dp # 0,p € G,G =
{p:Rep>a>0,A>a,f(p)=1/p.

In the second fact the z = f,(w) equation of the C set is equal to the z =
f2(p — A) equation, w = wy, (we use p — A = w for the w variable in the new
co-ordinates with the (4, 0) center). The z = fo(p — A) equation is defined in
the primary system of co-ordinates with the p complex variable (p is the radius-
vector in the primary system of co-ordinates with the (0, 0) center). The same
z = fao(R — A) equality takes place in the second system of co-ordinates with the
(A, 0) center too, (for all z, R = p); in the situation we can consider the new R — A
vector with the R radius-vector in the second system of co-ordinates wit the (A4, 0)
center. We obtain R — A = wy too, and the both z = f3(R — A),z = fa(p — A)
equalities are as the equality in the primary system so as in the second system of
co-ordinates for all p = A, (the equalities of the C set). The same equality in the
two system of co-ordinates is equivalent to the periodicity of the f>(w) function
with the A period.
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On estimates for the energy levels of a quantum billiard
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In the present talk we deal with estimates for the energy levels of a quantum
billiard in a large class of domains (domains with Holder singularities, Ahlfors
type domains). The Hausdorff dimension of the Ahlfors type domains boundary
can be any numberin [1,2).

Our method is based on composition operators on Sobolev spaces gener-
ated by (quasi)-conformal mappings. On this way, we obtain lower and upper
estimates for the energy levels of a quantum billiard.

The research was supported by RSF (Grant No. 23-21-00080).
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Quantum control by the environment and by quantum
measurements

Pechen A. N.

Department of Mathematical Methods for Quantum Technologies, Steklov
Mathematical Institute of Russian Academy of Sciences.

University of Science and Technology MISIS.

apechen@gmail.com

Control of quantum systems is an important branch of quantum physics
related both with fundamental interest and with existing and prospective appli-
cations to quantum technologies [1; 3; 12]. Often controlled quantum systems
are open, i.e. interacting with the environment, which is considered as having
deleterious effect on the ability to control the system. However, in some cases it
can be exploited as a useful resource.

Various approaches for using the environment as a resource exist. We will
discuss some recent results based on the incoherent control approach [2]. In this
approach, density matrix p; of the quantum system evolves under the action of
coherent and incoherent controls according to the master equation with time
dependent decoherence rates i (t),

dpy

T Lo n(ty(pr) = —i[Hu(t), pe] + Z'}/k(t)pk(pt) :

k

Here H,(t) is the Hamiltonian describing free system dynamics and its interaction
with coherent control u(t) (e.g., alaser field), n(¢) > 0is generally time-dependent
incoherent control (e.g., spectral density of incoherent photons), k denotes pairs
of energy levels in the controlled system and Dy, is a dissipator, for which two
physical classes were exploited — incoherent photons and quantum gas, with two
explicit forms of Dj, derived in the weak coupling (describing atom interacting
with photons) and low density (describing quantum system interacting with
a quantum gas) limits [8]. Generally, coherent control can also enter in the
dissipator, and in opposite, incoherent control also modifies the Hamiltonian via
Lamb shift. Non-Markovian master equations can be considered for incoherent
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control as well. This method was shown to provide approximate density marix
controllability of generic open quantum systems [7], it was applied to control
of two-qubit systems [6], description of reachable state for a qubit interacting
with the environment [5], development of speed gradient approach for energy
manipulation in quantum oscillator interacting with the environment [9], gradi-
ent based optimization of coherent and incoherent controls in open quantum
systems [10], etc.

Related to control by the environmen is control by back-action of quan-
tum measurements. Often performing measurement on quantum system, even
without reading the measurement result, leads to change of its state, known
as quantum state collapse. This change can be used for controlling quantum
systems [11]. Recently, quantum measurements with feedback were applied
to transport in photosynthetic systems [4] and to analysis of quantum control
landscapes in uncontrollable quantum systems with degenerate transitions [2].

RSF 22-11-00330, Minobrnauki 075-15-2020-788, K2-2022-025, “Priority 2030’.
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Dynamics and gradient optimization for a two-level open
quantum system
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! Department of Mathematical Methods for Quantum Technologies, Steklov
Mathematical Institute of Russian Academy of Sciences

2University of Science and Technology MISIS
" vadim. petrukhanov@gmail.com

" apechen@gmail.com

Quantum control which studies methods for manipulation of individual
quantum systems is an important tool necessary for development of quantum
technologies [7]. Often in experimental circumstances controlled systems can
not be isolated from the environment, so that they are open quantum systemes.
Moreover, in some cases the environment can be used for actively controlling
quantum systems, as for example in incoherent control [2; 3]. While in some cases
the solution for the optimal shape of the control can be obtained analytically,
often it is not the case and various numerical optimization methods are needed.
A large class of methods are gradient-based numerical optimization algorithms,
one of which is GRadient Ascent Pulse Engineering (GRAPE) developed originally
for design of NMR pulse sequences [1] and later applied to various problems,
e.g. [4;9].

In this talk, we consider the state-to-state transfer control problem for an
open two-level quantum system (qubit) whose evolution is governed by master
equation with GKSL-type dissipative terms driven by coherent and incoherent
controls [5; 6]. General form of the GKSL master equation in the absence of
controls was derived in particular in the weak coupling limit and in the stochastic
limit of quantum theory. We consider the specific model of such master equation
which includes coherent and incoherent controls.

The state of the system is represented by a vector in the Bloch ball. We consider
piecewise constant control as they are commonly used for gradient optimization
methods. Then we derive expressions for the dynamics and objective functional
gradient using matrix exponentials. Due to low dimension of the system, the
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corresponding 3 x 3 matrix exponentials can be analytically diagonalized. For
that we find eigenvalues and eigenvectors of the right-hand side matrix of the
system evolution equation. Roots of the third order characteristic equation are
analytically found using the Cardano’s formula. This enables obtaining exact
form of matrix exponentials included in the dynamics and functional gradient
expressions necessary for control landscape analysis. We analyzed the surface of
stationary states in Bloch ball for different constant controls (u, n). We estimated
first non-zero term of the objective functional important for robustness of optimal
control.

Partial support by Minobrnauki Ne 075-15-2020-788, Priority 2030, and RSF
Ne 22-11-00330.
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Rate of convergence of ergodic averages for Z* and R? actions
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Let (€2, i) be a measure space and A, f or A, f be ergodic averages generated by
one automorphism 7T or one flow {T%};cr and f € L(£2, u). It is known (see [1]
for example) that if the spectral measure o¢((—9,6]) < Ad* for some A > 0,
«a > 0and any d > 0then

ac|0,2) a=2 a>2
[A:f]5 | O@~*) | O Int) | OF?)
[Anfl3 | O(n=*) | O(n~*Inn) [ O(n~?)

In the talk we present the similar result for Z? and R? actions and discuss the
cases d > 2. Namely, denote the ergodic averages

ni—1ng—1 t1 to

Apf(w) = (TTTw), A — T T5%w) dsidss.
n1n2;§f12 tf()tth 0f(12)12
Let for the spectral measure
07((=01,81] (=82, 6]) < AS76;
forsome A > 0, o, 8 > 0 and any 61, d > 0, and
o+ af+p%=k(a+p), k>0.
Then
k € [0,2) k=2 K>2
2 —a,—B —oy =B 1 s —2e 28
[Acfllz | O@F1%t;"7) O(t; “t, 7 Int{ts) Oty "ty "
- ar=? loms T
14,115 | O ") | O ny nngnd) | 0 (¥, )
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Renormalizations in digital representation of continuous
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Let’s consider the binary system (base ¢ = 2) with the set of digits is {0, 1}.
Then the plot of digits number 0 and 1 has the following view:

Zo
I > I 1 I > —
} > } > v } >
1 T
Tl
fP———r1 e
} > 1 0
1 2 r

Figure 1: Plot of the digits number 0 and 1 for the binary non-symmetric system

As we define the digit number s in the following way (zs; = d(s, ) is the
s-th digit in the digital expansion of z): d(s, z) = d(0, ¢ ®2) = D(¢™°z), which
means that the digit number s is the digit number 0 with the changed scale over
z-axis, it becomes obvious, that for the negative numbers, any series in binary
non-symmetric system does not converge and hence we need a renormalization
procedure.

To solve the emerging problem, let’s consider the arbitrary positional base-¢
system with digits x;. As we have seen, for such a system the series

> g €))

§=—00

178


mailto:polushkin.ayu@phystech.edu

does not converge in general case, but we are always able to recover the number
x by the row of its digits (z5)S2 _ . This enables us to associate any finite = with

the series (1). All the divergences, which emerge in the discussed case have the

form: o
C . Z qs7 (2)

8=3S8p

where C'is a constant and ¢ is the base of the numeral system. For such a case we
can introduce the renormalization rule, which can be represented by the following
formal calculation (which is one of the possible ways to renormalize the divergent
digital sums; the alternative ways were described in [2]):

oo/ 1

z= ) x4 = =1 (Ts—1 — T5)q° (3)
s=—00 SEZL

The renormalization method can be generalized from the line to the case of

the finite lattice, on which all observables are finite. Let us consider the lattice

Ax - Zy. It does not have any infinite nodes and therefore the motivation for the

renormalization is no longer the convergence of the divergent series.

T

\

]
X
[11+

f i ; T

Figure 2: Renormalization on the finite lattice changes the representation of the
lattice

Its meaning is now to switch the representation of the lattice for Zy from
{0,1,...,N—1}to{—-k,—k+1,...,-2,—-1,0,1,2,..., N — k —1}. We can see,
that the renormalization on the lattice enables us to renormalize big positive value
to the small negative one. In [1] was shown that the renormalization, induced
by the lattice itself enables to nullify the “quasienergy” and more sophisticated
renormalizations are not needed in this case, but this renormalization may be
applicable to the description of Casimir effect on the lattice.
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Kantorovich optimal transportation problems with a parameter
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Let us recall that the Kantorovich optimal transportation problem deals with
a triple (u, v, h), where p and v are Borel probability measures on topological
spaces X and Y respectively, and ~ > 0 is a Borel function on X x Y. The
measures p and v are called marginal distributions or marginals, and 4 is called a
cost function. The Kantorovich problem consists in minimization of the integral

/ Wz, y) o (dz dy)
XxY

over the set IT(, v) of all Borel probability measures on the product X x Y with
projections p and v on the factors, thatis, 0 (AXY) = p(A)ando(X x B) = v(B)
for all Borelsets A C X and B C Y.

In general, there is only infimum

Kh(M»V) = inf / h(l’,y) O'(dl’dy)7
g€ll(pv) Jxxy

which may be infiite. If the cost function h is continuous (or at least lower
semicontinuous) and bounded and the measures p and v are Radon, then the
minimum is attained and measures on which it is attained are called optimal
measures or optimal Kantorovich plans.

We consider optimal transportation of measures on metric and topological
spaces in the case where the cost function and marginal distributions depend on a
parameter with values in a metric space. Here the questions naturally arise about
the continuity with respect to ¢ of the optimal cost K}, (1, v+) and also about the
possibility to select an optimal plan in IT(z, v;) continuous with respect to the
parameter. In addition, the set of all transport plans II(u.,v;) also depends on
the parameter, so that one can ask about its continuity when the space of sets of
measures is equipped with the Hausdorff metric generated by some metric on
the space of measures.
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We obtain an estimate for the Hausdorff distance between the sets of prob-
ability measures with given marginals via the distances between the marginals
themselves. This estimate is used to prove the continuity of the cost of op-
timal transportation with respect to the parameter in the case of continuous
dependence of the cost function and marginal distributions on this parameter.
Another application of the estimate for the Hausdorff distance concerns discrete
approximations of the transportation problem.
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Probability measure on conformal mappings
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Let us consider the set of conformal mappings from the unit disk D onto all
possible simply connected locally univalent domains with conditions f(0) =

0, f/(0) > 0. Each such mapping is determinate by a pair ¢, A, where ¢ — positive
number responsible for scale, A — periodic function on [0, 2] with integral

2
//\(t)dt -9 1)
0

Using this correspondence, it is proposed to introduce a probability measure on
the set of mappings, given as a functional of . The paper considers various issues
related to the construction of the theory and its justification.
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Moments method in optimal control investigation and state
estimation for fractional-order systems
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The moments method, widely used in control theory for linear integer-order
systems, allows us to reduce the optimal control problem to the [-problem of mo-
ments. Optimality in this case can be understood as the minimality of the control
norm for a given control time, or as time-optimality for a given restriction on the
control norm. It is also known the Krasovskii problem of the state estimation of a
dynamic integer-order system under the action of external disturbances, which
where inestigated using the method of moments.

In this work the possibility of a similar application of the method of moments
in optimal control and state estimation problems analyzed for dynamical systems
that are described by linear equations of fractional order:

0D{q;i(t) = aiqr(t) + biur(t) + fi(t),i=1,...,N. (1)

In equation (1) the fractional differentiation operator can be understood in the
sense of Hilfer, Hadamard, Erdei-Kober, Caputo-Fabrizio, Atangana-Baleanu etc.
The functions ¢; (), u;(t) and f;(t) describe, respectively, the state of the system,
control and external disturbance. The control is the p-integrable function p > 1.

When studying the optimal control problem of the system (1), conditions are
obtained under which the corresponding /-problem of moments is correct and
solvable. These conditions relate the parameters of the fractional differentiation
operator to the parameter p. Some explicit solutions to the optimal control prob-
lem are also obtained. When studying the problem of the state estimation of the
system (1), similar conditions for the correctness and solvability of the resulting
moment problem were also obtained and its explicit solution was constructed.

In addition, the possibility of using the method of moments for an approximate
solution of the optimal control problem for systems with distributed parameters
described by the diffusion-wave equation is investigated:

e

r(z) oDfQ(z,t) = — .

a |~ a0 t) 4 0) ) 2
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where Q(z,t) — state of the system, « € (0,1)or(1,2),t > 0,z € [0, L], (z,t) €
Q =0, L] x [0,00). In this case the distributed and boundary controls have been
considered. The approximate solution derived for the optimal control problem

for system (2), based on the corresponding moment problem, which correctness
and solvability analyzed.
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The Kardar-Parisi-Zhang (KPZ) equation is known to be very popular model of
the growth of the solid state surface (see [2] and references therein). As a rule this
equation is solved on the whole two-dimensional plane without any boundary
conditions [1; 3]. Meanwhile, technologically, the process of crystal surface growth
always occurs in a bounded domain. Thus, there is always a question: under what
conditions on this bounded domain can the solution of the KPZ-equation on the
whole plane be applied?

To clarify this situation let one consider the following model problem:

oh 1 (0n\® 9%h .
ot 2 ((‘336) 02’ W
where h(z,t) is a shape of growing surface with cylindrical generatrix.

Further let us provide the one-dimensional KPZ equation (1) by the next initial
condition:

h(z,0) =2In[1+mo6(1 —|z])], |mo| <1, (2)

where 6(x) is the Heaviside step function, and parameter mg plays the role
completely analogous to one of modulation depth in radio engineering.

If somebody considers equation (1) and initial condition (2) on the whole
straight line —oo < = < +00, then exact solution of the Cauchy problem (1)-(2)
is equal to:

h(x,t)zzln(1+”;° [erf(g;j_/;)—erf(a;_\/gﬂ), (3)

where er f(z) is the well-known Gauss error function.

On the other side if equation (1) is considered on the segment z € [—L, L]
then it ought to be endowed by some boundary conditions (of course it is assumed
that L > 1).
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The simplest boundary conditions express the absence of surface diffusion
via the ends of the segment:

oh oh
%\z:fL = %|z:+L =0. (4)

Exact solution of the initial-boundary value problem (2) and (4) for equation
(1) is equal to:

(5)

In this report numerical comparison of expressions (3) and (5) has been done.

In particular the KPZ equation (1) proves to forget about the presence of boundary
conditions (4) under quite large times.

h(z,t) =2 In <1+720

= w2n?t\ sin(rn/L)  7wnax
1+22exp( Iz > p—y cos T

n=1
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Semigroup approach to studying Volterra integro-differential
equations arising in viscoelasticity theory

Rautian N. A.
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Abstract Volterra integro-differential equations with integral operator kernels rep-
resentable by Stieltjes integrals are studied. These integro-differential equations
can be realized as partial integro-differential equations arising in the theory of
viscoelasticity and the theory of heat propagation in media with memory and
have many of other important applications.The approach is based on the study
of one-parameter semigroups for linear evolution equations.

Results on the existence of a strongly continuous contraction semigroup
generated by a Volterra integro-differential equation with operator coefficients in
a Hilbert space are stated. The statement of the corresponding Cauchy problem
for a first-order differential equation is given, and a theorem on the well-posed
solvability of this problem is stated. The properties of the generator of the semi-
group and the properties of the operator function associated with it (the symbol
of the original integro-differential equation) are studied. (See [1; 2]).

This work is supported by the Ministry of Science and Higher Education of
the Russian Federation (project number FSSF-2023-0016).
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On one integral inequality for logarithmic derivatives of
measures

Rezbaev A. V.
Higher school of economics

aratyo@yandex.ru

Let p be an absolutely continuous probability density on the real line. The
quantity

_ Frr
p(z)

is called the Fisher Information of the density p. Since the Fisher information
appears naturally in many mathematical problems, it is useful to know general
conditions which ensure that J(p) is finite.

In [4] A. V. Uglanov suggested the next elementary and useful lemma which
states that, roughly speaking, the Fisher Information of every smooth enough
density ¢ can be estimated via the sum of L; -norms of derivatives of this density.

Lemma 1. There exists a number C such that for every non-negative twice
differentiable function ¢ : R' — R! with an absolutely continuous second
derivative ¢ the following inequality holds, where we set 0/0 = 0:

400 9 T
)= / POF ;< ¢ / [l¢' 1+ 1" (O] + [¢" @] dt.

o(t)

This result was reinforced in Bogachev [2; 3] in the following way.
Lemma 2. If o : R' — [0, +00) is twice differentiable and " has bounded
variation, then

)|
/‘*” Ot < 8, + 11, + 2V

We denote by AC'(a, b) collection of all continuous functions « on the interval
(a,b) having continuous derivatives up to order [ — 1 such that the derivative u'~*
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is locally absolutely continuous. In the recent work Bobkov [1], the previous
inequality was slightly sharpened.
Lemma 3. For any non-negative function p of class AC3(R!)

/'pz d <2/|p |da:+4/|p” |d:c+2/|p”’ )|de.

Taking o(t) = |¢||In|¢|| " in (=6, §), we can see that .J () cannot be estimated
via ||¢’||z, and ||¢”||L,. It seems interesting, how much we can weaken the
assumptions in these lemmas still preserving the finite Fisher information. It
turned out that even in AC3(R') we can find a function ¢ with a bounded second
derivative that ¢’, ¢” € Ly (R'), but J(p) = +o0.

It also turned out that the inequality in Lemma 3 can be strengthened the next
way.

For any non-negative function p of class AC3(R')

00 +0o0 +o00 +o00
|p/(x)|2 / // /11
= (@) dx < [p'(z)|dx+2 [ [p"(x)|de+2 [ |p"(x)|dx.
— 00 — 00 — 00 —0o0

References

1.  Bobkov S. G. Upper Bounds for Fisher information // Electronic Journal of Probabil-
ity. — 2022. — Jan. —Vol. 27. — DOI: 10.1214/22-ejp834.

2. Bogachev V. I. Infinite dimensional integration by parts and related problems //
Preprint SFB 256 no. 235. Univ. Bonn. — 1992. — P. 1-35.

3. Bogachev V. 1. Remarks on integration by parts in infinite dimension // Acta Univ.
Carolin. Math. Phys. — 1993. —Vol. 34, no. 2. — P. 11-29.

4. Uglanov A. V. A quotient of smooth measures is a smooth function // Izv. Vyssh.
Uchebn. Zaved., Mat. — 1989. — No. 9. — P. 72-76.

190


https://doi.org/10.1214/22-ejp834

The interaction of shocks in 2D pressureless medium

Rykov Yu. G.
Keldysh Institute of Applied Mathematics RAS
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Letx = (x,y), (t,x) € Ry x R?,V = (0/0z,0/dy), then 2D system of pressure-
less gas dynamics can be written as follows
do 9(ou)

E‘FV'QUZO 5 Bt

+V-(ou®@u)=0, (1)

where g > 0 is the density of matter, u = (u, v) — velocity vector and ® denotes
the tensor product. Suppose ¢(0,x) = go(x), u(0,x) = up(x).

The system (1) has a single eigenvalue and incomplete system of eigenvectors;
thus, strictly speaking, it is not hyperbolic. But nevertheless it has many evolution
properties similar to standard theory of systems of hyperbolic conservation laws.
Thus it can be rendered as degenerate nonstrictly hyperbolic system. Because of
such degeneracy the generalized solutions of (1) are considered in the spaces of
measures, see €. g. [4]. As in conservation laws framework the system (1) permits
the formation of singularities. But these singularities are the concentrations of
corresponding measures on the manifolds of different dimensions. In 2D case, as
itis shown in [1; 3], there exist the moving curves in the space x with the mass and
momentum measures along the curve, having the densities P and I respectively
and evolving with respect to the equations

57 = ¥ {Viel - [0v]} = G {Ulo] - [oul} @)
o = 5 {V]ou] - [ovu]} — 5} {Uou] - [ouu]} °

where X = (x(¢,1),v(t,1)) are parametric representation of moving singularity
curve, (U, V) = (0x/0t, dv/0t), and for any value f it is denoted [f] = f(¢,X +
0) — f(t,X — 0). Let us note that the system (2) actually is the Renkine-Hugoniot
condition for (1) in case when the singularities have the form of moving curves in
the space x. It is also shown in [2] that the collision of moving singularity curves
leads to the formation of similar singularity curve with larger mass.

But in this talk we claim that there exists another form of collision. Consider
the Riemann initial data for (1), i.e. the initial data that are constant for each
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quadrantinx € R? ast = 0. Let enumerate quadrants in the standard manner
by the index i = 1, 2, 3, 4; the initial constants will be enumerated by the same
index. Then the following theorem is true.

Theorem 1. Consider the Riemann initial data for the system (1): u1 = uq =
—U, Uy = U3 = U, V] = Vo = —V, V3 = Vg =0, 0 = 0,1 #* 4, 04 = R, where
u > 0,v > 0and0 < ¢ < R are constants. Then in the solution of corresponding
Riemann problem there exist two solutions of (2) that interact with the formation
of §-functions in P,1 in one point of the space x.

Such situation was anticipated in [2], where the corresponding addition to
Renkine-Hugoniot conditions was given. We also would like to mention that the
family of singularities beyond the surfaces of codimension one should have much
more reach structure in higher space dimensions.
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Finitely generated weak closures of ergodic actions

V. V. Ryzhikov
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Weak closures of group actions in unitary representations generate various
semigroup structures. In ergodic theory, such closures have found many useful
applications. However, explicit descriptions of nontrivial weak closures of dynam-
ical systems have been obtained for a narrow range of actions. We give a large
class of new examples.

A function P of an operator 7" acting in a Hilbert space is admissible if P(T") =
Mool e > 0,0 < cog < Yoy < 1. For any set of admissible func-
tions P, ..., Py, we prove the existence of unitary operator 7" with continuous
spectrum such that the weak closure of the action induced by 7 is a semigroup,
generated by 0, T, P, (T), . .., Px(T) and by the operators adjoint to them.

The action we need has been induced by a specially constructed ergodic
transformation of an infinite measure space. The corresponding construction
combines the technique of rank one transformation with random parameters
with the so-called Sidon ones. The formers ensure the presence of the necessary
operators in the weak closure of the action, while the latters eliminate the presence
of unnecessary operators in it.
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The Collet-Eckmann set for a family of one-dimensional
non-smooth Lorenz maps

Safonov K. A.
National Research University Higher School of Economics, Russia
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In the talk, we consider a two-parameter family of one-dimensional maps with
parameters c and v given on the compact interval [—1, 1] by

T=T.,(z) = (—1+|z|" - (c+ ¢(z;c,v)) - sign(x),

where ¢ > 0, v > 1 and ¢(z;c,v) is a C'TP-function whose derivatives with
respect to = and c are small quantities of order v — 1. The map T, , appears as a
one-dimensional models for dynamical systems with Lorenz-like attractors [1]
or Rovella attractors [6]. For those systems, T, can be regarded as a factor
map related to an appropriate strong stable invariant foliation (see [1; 5; 6]). In
general, this foliation has low smoothness, therefore we assume that the small
term ¢(z; ¢, v) is only a Holder function.

We consider the map 7. , when v is arbitarilly close to 1 and study the problem
of the description of the set of parameters such that T, ,, satisfies Collet-Eckman
condition (see [3] and item (1) in Theorem below). We generalise the classical
result by Benedicks and Carleson [2] which states the positiveness of the Lebesgue
measure of the parameters satisfying Collet-Eckman condition for one-parameter
family of quadratic maps z = —1 + cz? (see also [4; 7] for further generalisations).
Our approach is based mainly on ideas from [2]. However, for v < 2 the map T ,,
has an unbounded second derivative, which does not allow to use directly the
ideas of Benedicks and Carleson. Our main result is presented in the following
theorem.

Theorem. In the (c,v)-plane there is a set E of positive Lebesgue measure
A(FE) such that for the family T, , (x) the following holds:

(1) there exists a constant~y > 0 such that for any (c,v) € E one has

DT, (1) = DT, (—1) > €™, Vn € N;
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(2) there exists a constant” > 0 such that for any (c,v) € F andx € [—1,1]

. In DT, (x) .
lim sup T > 7, if T, (r) #0, Vn €N;

n—oo

(3) foranyv € (1,1+4), the pointc = 2 is a density point of the set EY = EN{v =

const}, ie.,

i METN[2.2-4))

=1.
A—+0 A

(4) the topological limit of E¥ asv — 1 contains a non-trivial interval of the form

[co, 2] for some constant ¢y < 2.
We also discuss in the talk, the application of the above results to homoclinic

bifurcations of the separatrix figure-eight with neutral saddle equilibrium which
may create chaotic Lorenz and Rovella attractors.

This work was supported by the Russian Science Foundation grant No. 19-71-

10048.
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To obtain a unitary representation of groups of self-mappings of a Hilbert space
we introduce a measure on a Hilbert space such that this measure is invariant
with respect to the group of transformation. We describe a measures with the
above invariance property such that these measures are nonnegative, complete,
locally finite, o-finite. But they are not countable additive Borel measures.

In the space of functions that are quadratically integrable with respect to an
invariant measure we obtain representations of the group of isometries of the
Hilbert space and the group of symplectomorphisms. We study the continuity in
the strong operator topology of the obtained representation. Subgroups having a
continuous representation are obtained. Also the strongly continuous unitary
representation of above groups are obtained in invariant subspaces of the space
of quadratically integrable functions.

A random unitary group are studied as the unitary representation of a random
group of self-mappings of a Hilbert space. Limit distribution for compositions of
independent identically distributed random transformation and compositions of
its unitary representations are analyzed in the form of convergence in measure
and convergence in distribution.
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Noise Effects on Chaotic Hamiltonian Dynamics

Miguel A. E. Sanjuin
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We analyze some noise effects on Hamiltonian Dynamics. In particular, we
focus in the paradigmatic Hénon-Heiles Hamiltonian system where we study the
effect of noise in the escapes from the potential. Furthermore, we develop some
techniques such as probability basins aiming to quantify the unpredictability of
the noisy Hamiltonians. This is a joint work with A. R. Nieto and J. M. Seoane from
URJC, Spain.
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Eta-invariants for families of operators with shifts
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Melrose defined eta-invariants for parameter-dependent elliptic operators in
the sense of Agranovich and Vishik. In this approach, the eta-invariant is defined
as a regularization of the winding number of the family.

In noncommutative geometry and in the theory of nonlocal problems, an
important role is played by a class of operators associated with group actions on
manifolds. More precisely, for an action of a group on a manifold, we consider
operators equal to linear combinations of shift operators induced by the action
of the group, where the coefficients are pseudodifferential operators.

We study eta-invariants for such operators, where the coefficients are parame-
ter-dependent operators. This problem was solved at least in the situation where
1) the group is of polynomial growth; 2) it acts isometrically on the manifold; 3) the
coefficients can be elements of the algebra of parameter-dependent operators
generated by the classical parameter-dependent pseudodifferential operators
and the operators of multiplication by periodic functions.

Note that parameter-dependent operators of this type arise in the study of
nonlocal problems on manifolds with conical points and on manifolds with
cylindrical ends. In the case of the trivial group, this problem was solved in
our recent paper [1]. We apply methods developed in the cited paper.

The talk is based on joint work with Konstantin N. Zhuikov, see [2].

This work was supported by the Ministry of Science and Higher Education of
the Russian Federation (project number FSSF-2023-0016).
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On the strange nonlocal homogenized problem arising as the
limit of a Poisson Equation with dynamical Signoroni
conditions on the boundary of perforations of critical size and
arbitrary shape

Shaposhnikova T. A.

MSU
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The talk addresses the homogenization of the problem for the Poisson equa-
tion in a domain perforated by arbitrary shaped perforations. A dynamic Signorini
condition with a large coefficient is specified on the boundary to these inclusions.
We are concerned with the critical relation between this coefficient,the period of
the structure, and the size of the holes. We show that in this case homogenized
problem contains a new nonlocal “strange” term and proves the convergence

theorem.
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Feynman Integrals in Quantum Gravity

Shavgulidze E. T.
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The enormous popularity of gravity in the last several decades motivated by
its role in string theory and studies of BH physics in the dimensional reduction
approach has grown after realizing the Schwarzian nature of the JT dilaton gravity
and the relation of this theory to SYK model.

The general form of the 2D gravity action up to the terms quadratic in curvature
Kis

/I:co/\/?d%ﬂ—cl/[(\/?d%—i-@/KQ\/ngx. (1)

The first two terms do not determine the dynamics of 2D gravity. While the
part of the action quadratic in the Gaussian curvature does.

Commonly it is transformed to the dilaton gravity action. An alternative way
is to deal only with the geometric structures of the surface.

The action (1) is invariant under general coordinate transformations. Here, we
reduce the set of coordinate transformations and consider the action restricted
to the conformal gauge, where the metric of the 2D surface looks like

di*> = g(u, v) (du® + dv®) = g(z, z) dzdz VG=g. (2)

1
K =---Alogy, 3)
29

where A stands for the Laplacian.
We consider the specific form of the action (1)
A2 2 _ S 2 _
A=— [ (K+4+4) g(z, 2)dzdz = > (AY)” dzdz (4)

2
d d

where

4
AquAIqu+§7 q= (5)

S
R
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Now path integrals in the theory

/ F(g) exp{~A(g)} do (6)

are path integrals
[ P expl-a(w)} v @)
over the Gaussian functional measure

el A() dv
) = e AW dp ®

We consider a model of 2D gravity with the action quadratic in curvature
and represent path integrals as integrals over the SL(2, R) invariant Gaussian
functional measure. We reduce these path integrals to the products of Wiener
path integrals and calculate the correlation function of the metric in the first
perturbative order.

Talk is based on V. V. Belokurov and E. T. Shavgulidze, An approach to quantum
2D gravity, Physics Letters B Volume 836, 10 January 2023, 137633
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Classification of all constant solutions of SU(2) Yang-Mills
equations
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We present a classification and an explicit form of all constant solutions of the
Yang-Mills equations with SU(2) gauge symmetry for an arbitrary constant non-
Abelian current in pseudo-Euclidean space R?'¢ or Eulidean space R" of arbitrary
finite dimension n = p + ¢. Using singular value decomposition, hyperbolic
singular value decomposition, and two-sheeted covering of orthogonal group
by spin group, we solve the nontrivial system for constant solutions of the Yang-
Mills equations of 3n cubic equations with 3n unknowns and 3n parameters
in the general case. We present a new symmetry of this system of equations.
All solutions in terms of the potential, strength, and invariant of the Yang-Mills
field are presented. Nonconstant solutions of the Yang-Mills equations can be
considered in the form of series of perturbation theory using all constant solutions
as a zeroth approximation.
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Some aspects of higher gauge theories

Shishanin A. O.
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It is well known that a 2-form field or a Kalb-Ramon field appears naturally in
string theory.

Is there a non-Abelian generalization of the 2-form field? Also such field
generalizes the Yang-Mills theory. A suitable generalization of the theory with
2-form is the higher Yang-Mills theory based on the Lie 2-group or equivalently a
2-crossed module [1; 2].

One can define higher analogues of curvatures for higher gauge theories with
the trivial principal 2-bundle. It is also possible to write here the higher analogues
of the Bianchi identities, the equations of motion and action [1].

In talk I will describe in more detail the higher Yang-Mills theory and its
dimensional reduction on the circle.
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Supersingular and large solutions of semilinear parabolic and
elliptic equations
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Exact conditions for the existence of non-negative super-singular (s.s.) solu-
tions of these equations (solutions which a more singular at some points of the
boundary of the domain, than any solution of the corresponding linear equation),
as well as the structure of these solutions, were first obtained in the work of
H. Brezis, L. Peletier, D. Terman (1986) in the Cauchy problem for a semilinear heat
equation with a nonlinear absorption term f(u).The study of another important
class of strongly singular, so-called large (b.) solutions, that is, solutions taking
an infinite value on the entire or on some part of the boundary of the domain,
was initiated by the work of L. Bieberbach (1916), where the existence of these
(b.)solutions was established for a semilinear elliptic equation with nonlinear
absorption f(u) = b?exp(u) in a bounded smooth 2-dimensional domain D. For
the first time, the uniqueness of the (b.) solution was proved by C. Loevner,
L. Nirenberg (1974) in case of bounded smooth n-dimensional domain D and
nonlinear absorption f(u) = u("+2m=2"",

We study existence and uniqueness conditions, as well as qualitative and
asymptotic properties of (s.s.) and (b.) solutions of various classes of semilinear
parabolic and elliptic equations with “nonhomogeneous” absorption structure
f(t,u) or f(x,u) degenerating on the boundary of the region, or its part, or on
some manifolds that lie in the region and whose boundary has a non-empty
intersection with the boundary of the domain. Exact conditions are established
for this degeneracy, which guarantee the existence or non-existence of (s.s.) or
(b.) solutions. It is shown that for some problems these conditions are necessary
and sufficient (criterion) for the existence of the solutions under discussion. In
particular, it is shown that in the elliptic case with the absorption f(x,u) =
g(z)uP,p > 1, degenerating at the boundary of the domain, obtained condition
on the degeneracy of g(x) is only a new close to the exact sufficient condition for
the uniqueness of the (b.)solution and, surprisingly, the sufficient and necessary
condition for the existence of the (s.s.)solution. This connection justifies a parallel
study of the discussed classes of solutions.
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Some of these results were published in [1-7].
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A priori estimates of solutions to mixed problems for the
Vlasov-Poisson system and kinetic of plasma in a mirror trap

Skubachevskii A. L.

Peoples’ Friendship University of Rissia

alskubachevskii@yandex.ru

We consider the first mixed problem for the Vlasov—Poisson system describing
a kinetics of high temperature plasma in a fusion reactor with external magnetic
field. It was obtained a priory estimate of solutions of this problem with compact
supports of distribution functions with respect to space variables.

This work ia supported by the Ministry of Science and Higher Education of
the Russian Federation (megagrant agreement No. 075-15-2022-1115) .
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Solution of a one-dimensional initial-boundary value problem
for the Klein-Gordon equation on the semiaxis and its
asymptotics

Smirnova E. S.'*, Dobrokhotov S. Yu.?

! Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad Oblast,
Russia

2Ishlinsky Institute for Problems in Mechanics of the Russian Academy of
Sciences, Moscow, Russia

" smirnova.ekaterina.serg@gmail.com

In this work, the initial-boundary value problem for the Klein-Gordon equa-
tion on the semiaxises z > 0,t¢ > 0 is formulated and solved. A one-dimensional
system of equations of hydrothermodynamics, which describes the motion of
atmospheric gas, in particular, the propagation of plane acoustic waves initiated
by a source at the lower boundary of the region, is reduced to such a problem.
Exact analytical solutions are obtained for a family of boundary functions and
asymptotics are obtained.

The reported study was funded by Immanuel Kant Baltic Federal University,
project No 122051300013-8.
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Point to point controllability for systems with drift

Stepanov Eugene

PDMI RAS

stepanov.eugene.sns@gmail.com

We discuss global controllability for autonomous systems of ODEs. In particular,
we give a constructive proof of a global controllability result for such a system
guided by bounded locally Lipschitz and divergence free (i.e. incompressible)
vector field, when the phase space is the whole Euclidean space and the vector
field satisfies so-called vanishing mean drift condition. For the case when the
ODE is defined over some smooth compact connected Riemannian manifold,
we significantly strengthen the assertion of the known controllability theorem
in absence of nonholonomic constraints by proving that one can find a control
steering the state vector from one given point to another by using the observations
of only the state vector, i.e., in other words, by changing slightly the vector field,
and such a change can be made small not only in uniform, but also in Lipschitz
(i.e. 1) topology. Joint work with Sergey Kryzhevicz.
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Affine super Yangian and quantum Weyl groupoid

Stukopin V. A.

Moscow Institute of Physics and Technology, South Mathematical Institute

stukopin@mail. com

The super Yangian ¥; (§(I1)) = Y; (sl(m|n)) of the affine special linear Lie superal-
gebra §(IT) = si(m|n) is defined in the case of an arbitrary system of simple roots
II, first in terms of the so-called "minimalistic” system of generators and defining
relations. We also introduce the super Yangian Y; (sl(m|n)) of the special linear
Lie superalgebra in terms of the new system of Drinfeld generators, as well as in
the case of an arbitrary system of simple roots of the Lie superalgebra ¥; (sl(m|n)).
We prove that the super Yangians Y; (sl(m|n)) and ¥;(sl(m|n)) are isomorphic
as associative superalgebras. We introduce the Weyl groupoid in the case of the
super Yangian ¥; (sl(m|n)) and explicitly describe the action of the elements of
the groupoid as isomorphisms in the category of super Yangians ¥; (§(II)) of a
special affine linear superalgebra defined by various systems of simple roots I1.
We describe quasi Hopf structures on affine super Yangians defined by triangular
decompositions.
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A free boundary problem with temperature-dependent thermal
conductivity with power-law nonlinearities

Takhirov J. O.
Institute of Mathematics

prof.takhirov@yahoo.com

The heat conduction equation is a non-linear equation when the temperature
dependence of thermal parameters is taken into account. It is proved that the
mathematical condition for reducing the one-dimensional nonlinear heat equa-
tion to a linear form is the constancy of the Storm condition for heat capacity and
heat conduction.

The nonlinear heat equation for an isotropic solid has the form

V(b(u)Vu) = a(u)uy

Here u is the temperature of the solid, b(u) is the thermal conductivity, a(u) =
pC,, where p is the density, C,, is the specific heat at constant pressure. The two
quantities b(u) and a(u) are called “thermal parameters”. It is assumed that the
metal has nonlinear thermal characteristics, so that the heat capacity a(u) and
thermal conductivity b(u) satisfy the Storm condition (see, for example, [1-3]):

a(u)
d b(u)

du alu)

= )\ = const > 0. (1D

Condition (1) was originally obtained in [3] in the study of thermal conductiv-
ity in simple monatomic metals. In this work, it was shown that if this condition is
met, the heat equation can be transformed to a linear form. There the condition
(1) is checked for aluminum, silver, sodium, cadmium, zinc, copper and lead.

In this paper, we study a Florin-type problem with a free boundary without
initial conditions in the following formulation.

Statement of the problem. Find a pair of functions (s(t), u(t, z)) such that the
function s(¢) is continuously differentiable on the interval 0 < ¢ < T', s(0) = 0,
s(t) > 0and the function u(t,z) in D = {(t;z) : 0 <t < T,0 < = < s(t)}
satisfies

g = (u%ug)x —au™>, (t,x) € D (2)
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is continuous in D with the derivative u, (¢, ) and satisfies the conditions

up(t,0) = 0,0 < t < T, (3)
ux(t,s(t)) =0,0 <t <T, (4)
u(tas(t)) :g(s(t))ao <t<T. (5)

Here g(x) > 01is defined and continuous in the interval 0 < z < x4, 0 <
s(t) < xg,a > 0. The study is carried out according to the following scheme. First,
with the help of some transformations (hodographs), the problem is reduced to a
problem with a free boundary for a new function v(¢, y) in some non-standard
domain for a parabolic equation with the lowest term , without an initial condition
with a homogeneous boundary condition of the second kind. Some initial a priori
estimates for v(t, y) are established and the uniqueness theorem for the solution
is proved. It can be seen that problem (2)-(5) is a Florin-type problem, which
is characterized by a number of features: the free boundary begins at the solid
wall z = 0; a free boundary condition is implicitly specified for this boundary;
the behavior of the free boundary is unknown. Therefore, below we consider a
problem with an initial condition, which reduces to a Stefan-type problem. Their
equivalence is proved. To solve the Stefan-type problem, a priori Schauder-type
estimates are established and, on their basis, an existence theorem is proved. At
the same time, for the unknown boundary, two-sided estimates are established
from known curves that determine the behavior of the unknown boundary at
t — 0. At the end of the article, it was proved that with an unlimited increase in
time, the free boundary tends to some constant x.
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Solvability problem of elliptic functional differential equations
with orthotropic contractions in weighted spaces

Tasevich A. L.
RUDN University, FRC CS RAS

atasevich@gmail.com

We study a solvability problem of elliptic functional-differential equations with
contractions and expansions of arguments in the principal part.

2

ARru = — Z (Rijuz,)z; = f(21,72),

4,5=1

Rijv(x) = a;jov(z1, z2) + aijlv(qilxlame) + aij,—lv(qﬂﬁhpflb)’ p,q > 1.

Functional-differential equations could have power singularities of solutions
on a boundary or inside a bounded domain and it turned out to be natural
to consider them in weighted spaces. Some solvability results were obtained
in weighted spaces introduced by V.A. Kondratiev to study elliptic problems in
domains with angular or conical points. A new type of weighted spaces with the
weight associated with the orthotropic contractions is constructed.

This work is supported by the Ministry of Science and Higher Education of
the Russian Federation (megagrant agreement No. 075-15-2022-1115).
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Structure Of Essential Spectrum And Discrete Spectra Of The
Energy Operator Of Six Electron Systems In The Hubbard Model.
Third Singlet State

S. M. Tashpulatov

Tashkent, INP

sadullatashpulatov@yandex.com

The Hubbard model first appeared in 1963 in the works [1]. We consider of the
energy operator of six-electron systems in the Hubbard model and investigated
the structure of essential spectra and discrete spectrum of the system for third
singlet state. Hamiltonian of the considering system has the form

H = AZ a'jr;,»yam,'y +B Z ajy—l,»\/a'rn-i-ﬂ—y +U Z a:_n’TarrL,Ta;’ia7rz,L~

m,Yy m, T,y m

Here A is the electron energy at a lattice site, B is the transfer integral between
neighboring sites, 7 = +e;, j = 1,2, ..., v, where e; are unit mutually orthogonal
vectors, which means that summation is taken over the nearest neighbors, U is
the parameter of the on-site Coulomb interaction of two electrons, - is the spin
index, v =7 or v =/, 7 and | denote the spin values % and — %, and a:rnﬁ and a,, 4
are the respective electron creation and annihilation operators at a site m € Z”.

In the six electron systems has a octet state, and quintet states, and triplet
states, and singlet states. The energy of the system depends on its total spin S.
Along with the Hamiltonian, the N, electron system is characterized by the total
spin S, S = Smaws Smaz — Ly e Smins Smaz = 25, Smin = 0, 3.

Hamiltonian H commutes with all components of the total spin operator S =
(S*,S7,5%), and the structure of eigenfunctions and eigenvalues of the system
therefore depends on S. The Hamiltonian H acts in the antisymmetric Fock space

Has = 12°((Z7)%), where 1$%((Z")%) is the subspace of antisymmetric functions
of I5((Z¥)%). Let ¢y be the vacuum vector in the space H, . The third singlet state
corresponds to the free motion of six electrons over the lattice and their interac-
tions with the basic functions *s0 ., .z = a; ar af af af af 0. The
subspace ®H?, corresponding to the second singlet state is the set of all vectors of

the form 3’(/}2 = Zp,q,'r,t,k,nGZ” f(p7 q,7, t7 k? n)382,q,r,t,k,nEZ”7
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f € 1§°, where [$° is the subspace of antisymmetric functions in the space
I2((Z¥)®). We denote by ® H? the restriction of operator H to the subspace *HC.
Theorem 1. Ifv = 1 andU < 0, then the essential spectrum of the operator
3HY consists of the union of seven segments: 0.ss(*H?) = [a+c+e,b+d+ f]U
[a+c+ 23,0+ d+2z3)Ulat+e+ 20,0+ f+ 22]U[a+ 20 + 23,0+ 20 + 23] U
[c+e+z1,d+ f+2z1]U[c+ 21+ 23,d+ 21 + 23] U e+ 21 + 22, f + 21 + 23],
and discrete spectrum of the operator® H? consists of no more one eigenvalue:
adlsc(z‘Hs) = {21 + 22 + 23}, orog;sc(*H?) = ), here and hereaftera = —2A —
4Bcos ,b=—2A+4B cos A2 ,c=2A—4Bcos A"‘,d = 2A+4Bcos%,e =

24 — 4B cos %, =2A+ 4B cos %, andz; = —2A + \/QU2 + 16 B2 cos? %,

29 = 2A — \/9U2 + 16 B2 cos? %7 andzz = 2A — \/U2 + 16B2 cos? %, where
A1 = My, Ay = p+0,and A3 = n+&, and )\, p,~y, 0,1, & are the quasimomentum
of the electrons.

Theorem 2. Ifv = 1 andU > 0, then the essential spectrum of the operator
3HY consists of the union of seven segments: 0.ss(*H?) = [a+c+e,b+d+ f]U
la+c+23,b+d+Z]UJa+e+22,b+ f+Z|U[a+ 22+ 23,0+ 2 +Z3]U[c+e+
zZi,d+ f+Z1)U[c+ 721 + 23, d+ 21 + Z5] U [e + 21 + 22, f + 21 + 22|, and discrete
spectrum of the operator® H? consists of no more one eigenvalue: o 4;s.(>*H?) =

{Z1 + 22 + 23}, or0gisc CH?) = 0, herez; = —2A — \/9U2 +16B2 cos2 &

2

Zo = 2A + \/9U2 + 16 B2 cos? 72, andzz = 2A + \/U2 + 16 B2 cos? A*
Loty — 3.and U < 0,4, = (AL A?AD). Ay — (A%, AD. AD). and Ay —
(A9, A9, A9), and W — Watson integral.

AO
12B cos 52 0 9
Theorem3 IfU < 0,andU < —# andcosA2 > 3cosA2,and

cos 2 > cos &1 , then the essential spectrum of the operator® H? consists of the
un1on ofseven segments Jess( HY) = [al o ter, by + di + f1J [a1 +c1 +
25, b1 +d + z5]U [a1 +ep +227b1 +f1 —|—22] [a1 +z2+zg7b1 +z2—|—23] [01 +
er+z1,d1 + fi + 2] U fer + 21 + 25, d1 + 21 + 23] U e + 21 + 20, fi + 2, + 23],
and discrete spectrum of the operator® H? consists of no more one eigenvalue:
’ ’ ’ 0
Taise(PHY) = {21 + 25 + 23}, 0r 04isc(*H?) = 0, herea; = —2A — 12B cos 5,
0 0 0
by = —2A+ 1QBcosA2 ,01 = 2A — 1QBcosA2 ,dy = 2A + 1QBcosA2 ,e1 =
2A—12B cos &3 5 ,f1 =2A4—12Bcos 2 andzl,zz, andz3, are the same concrete
numbers.
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Topological conjugacy of chaotic homeomorphism groups of
surfaces with boundary

Tonysheva N. S.'*, Zhukova N. L.1**
I National Research University Higher School of Economics, Russian Federation
" ntonysheva@yandex.ru

" nina.i.zhukova@yandex.ru

Chaotic homeomorphism groups of topological surfaces with boundary are
investigated. Follow to [1], we call a homeomorphism group G of a topological
manifold X chaotic if there exists a dense orbit of G and the union of finite orbits
is dense in X.

Recall that a homeomorphism group G of a metric space (X, d) is called
sensitive to initial conditions if there exists a number § > 0 such that for every
open subset U C X there exists an element g € G such that diam(g(U)) > 4.

We consider homeomorphism groups as continuous topological groups en-
dowed with the discrete topology. The well known result of E. Kontorovich and
M. Megrelishvili [4] on sensitivity of continuous actions of semigroups implies
that that chaotic homeomorphism groups are sensitive to initial conditions.
Therefore, definition of a chaotic homeomorphism group mentioned above can
be considered as an analogue of the notion of a chaotic dynamical system in the
sense of R. L. Devaney [2].

We use toral linked twist mappings and develop the method suggested in [1] to
construct chaotic homeomorphism groups G;, i € N, of surfaces with boundary.
The case of empty boundary is not not excluded. We also investigate chaotic
homeomorphism groups on non-compact topological surfaces.

A distinctive feature of this paper is the investigation of topological conjugacy
of homeomorphism groups generated by toral linked twist mappings, based on
the use of the properties of the topological space of fixed points of these groups.

In particular, for every compact surface M with a boundary, an infinite count-
able family {G; | i € N} of pairwise topologically non conjugated chaotic homeo-
morphism groups isomorphic to Z is constructed.

The investigation of chaotic homeomorphism groups of compact surfaces
were supported by the Russian Science Foundation (grant no. 22-21-000304).
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The results on homeomorphisms groups of non-compact surfaces were ob-
tained with the support from the Laboratory of Dynamical Systems and Applica-
tions NRU HSE, grant of the Ministry of science and higher education of the RF
(ag. no. 075-15-2022-1101).
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Linear Interpolation of Program Contrl with Respect to a
Multidimensional Parameter in the Convergence Problem
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We consider a control system containing a constant n-dimensional vector param-
eter, the approximate value of which is reported to the control person only at the
movement start moment.

Only the set of possible values of this indeterminate vector parameter is known
in advance.

For this control system, the problem of approaching the target set at a given
time is posed.

At the same time, it is considered that the control person is not able to carry
out in real time the cumbersome calculations associated with the construction of
such resolvability structures as reachable sets and integral funnels.

Therefore, to solve this problem, it is proposed to calculate in advance several
“nodal” resolvability controls for the parameter values, which are the nodes of the
grid covering the set of possible parameter values.

In the event that at the movement start moment it turns out that the value
of the parameter does not coincide with any of the grid nodes, it is supposed
to quickly calculate the program control using linear interpolation formulas.
However, this procedure can be effective only if a linear combination of controls
corresponding to the same “guide” in the terminology of N. N. Krasovsky’s extreme
aiming method is used.

For effective application of linear interpolation, it is proposed to construct
2™ “nodal” resolvability controls for each node of the grid and, in addition, use
the method of dividing the control into main and compensating. Due to the
application of the latter method, the calculated resolvability set turns out to be
somewhat smaller than the actual one, but the accuracy of transferring the system
state to the target set increases.
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This research was supported by the Russian Science Foundation (grant no. 19-
11-00105, https://xrscf.ru/en/project/19-11-00105).
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Pseudo-differential equations in non-smooth domains

Vasilyev V. B.

Belgorod State National Research University

vbvs7@inbox.ru

1. A general concept. This talk is devoted to describing the structure of
a special class of linear bounded operators on a manifold with non-smooth
boundary. Our description is based on local principle and theory of envelopes [1;
3]. This approach leads to studying invertibility conditions for model pseudo-
differential operators in canonical domains.

2. Local situation. Starting point for the study is the model pseudo-differential
equation [6] in the cone C C R™

(Au)(z) =v(x), zeC, zeC, (1)

where A : H*(C) — H* %(C) is a pseudo-differential operator with the
symbol A(¢) satisfying the condition

T+ €D < JAE)] < cal + €)%

Constructions of solutions for the equation (1) was obtained for certain cones
C [5].

3. Asymptotic analysis. Each cone C has certain parameters as a rule, for
example C¢ = {z € R? : & = (x1,22), 2 > alz1],a > 0} with the parameter
a and Cff_’b ={z € R : x = (v1,22,73),23 > alr1| + |2a],a,b > 0} with
two parameters a, b. It is very natural question that if we have a solution of the
equation (1) then what is its limit value if the parameters tend to their endpoint
values 0 or co. Some cases were discussed in [2].

4. Discrete analysis. One can consider a discrete variant of the equation (1)
using the following constructions for functions of a discrete variable uy4 (), & €
hZ™, h > 0.LetCy = hZ™NC,h = h~', T = [—7, 7] and A4(£) be a measurable
periodic function in R™ with basic square of periods AT™. A digital pseudo-
differential operator A, with the symbol fld(f ) in the discrete cone C, is called
an operator of the following type

220


mailto:vbv57@inbox.ru

Aua)@) = Y 02 / Aa(6)ei GG ()de, & € Cy,
GERZ? s

where 4(£) denotes the discrete Fourier transform of w4 [4].

We can introduce discrete analogues of spaces H*(C;) and for the special case
C = R itis possible to obtain solvability conditions for the discrete analogue
of the equation (1). It was shown that discrete solutions have approximation
properties for small h. The similar results were obtained for a discrete quadrant
in a plane. Moreover, a comparison between discrete and continuous solutions
are given also for some canonical domains.
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Maximally symmetric bifurcations of Liouville tori of billiard
books that contain foci.

Vedyushkina V. V.

Lomonosov Moscow State University

arinir®yandex.ru

Consider a two-dimensional CW-complex whose two-dimensional cells are flat
domains bounded by arcs of confocal quadrics. The one-dimensional cells of
the complex are the segments of the boundaries of elementary billiards — the
segments between the angles of the boundary curves. We enumerate all two-
dimensional cells and assign to each one-dimensional edge of the complex —
“spine” of the book — a cyclic permutation of the numbers of sheets adjacent to
this edge. Project all billiard sheets isometrically onto a plane. If the image of
several edges of a CW-complex under this projection is the same arc of the plane,
then we combine the cycles assigned to them into one permutation (these cycles
are obviously independent). For the continuity of particle motion through the
book, we require commutation of permutations in zero-dimensional cells. In
projection terms, this means that the permutations assigned to the arcs of two
quadrics in a neighborhood of the intersection point of the latter commute. We
call this two-dimensional complex with assigned permutations a billiard book
(3].

The billiard movement according to the book is defined as follows. Inside
two-dimensional cells, the movement does not change. Let, while moving along
the sheet with number ¢, the material point hits the spine of the book, then after
the impact it will continue its movement along the sheet o (7).

Since billiards bounded by arcs of confocal quadrics are integrable [2], the
corresponding billiard books are also integrable. Our goal is to describe the
resulting Lagrangian fibration. It always has one special fiber whose trajectories
lie on straight lines passing through the foci of a family of quadrics that form the
boundaries of the sheets of the billiard book.

Proposition Consider the billiard book which is glued from convex domains
Ay, each of which is bounded by one arc of the ellipse and one arc of the hyperbola
(which are confocal). Commuting permutations p (elliptic boundary) and o
(hyperbolic) are assigned to the spines of the book. Consider the permutation
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w = o o p and expand it into a product of independent cycles. Renumber the
sheets of the billiard book so that

w=[1._k)(k+1..2k)..(n—k+1.n).

Then the numberm = ; (the number of independent cycles in the decomposition

of the permutation w) is equal to the number of critical circles of the 3-atom

(bifurcation of Liouville tori) describing the bifurcation at the focal level. The

atom itself has the following form depending on the permutations of o and p.

1. Ifk is odd, then the atom on the focal level is the atom A*™.

2. Ifthe numbers k and! are even (wherel = p™ (1)), then the atom belongs to
the series of maximally symmetric atomsY,, (see [1]).

3. Ifthe number k is even and the number! is odd, then the atom belongs to the
series of maximally symmetric atoms X, (see [1]).

The work was supported by Russian Science Foundation, project 22-71-10106.
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Higher order traps in quantum control landscapes
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An important problem in quantum control theory is the study of the existence
of traps in quantum control landscapes. Traps are controls from which it is
difficult to escape by local search optimization methods. The notion of the higher
order trap was introduced in [1], where quantum control landscapes with 3-rd
order traps were discovered. In the talk we show that traps of the order (2/V — 3)
exist for N-level controllable quantum systems with the “chained” interaction
Hamiltonian. We show that the quantum control landscape for the problem of
controlled generation of single-qubit phase shift quantum gates for small times is
free of traps [4]. We also investigate the detailed structure of the quantum control
landscape for this problem [3].

The work is partially supported by the project of the Russian Science Foun-
dation grant No. 22-11-00330, “Priority 2030” federal leadership program and
Ministry of Science and Higher Education (grant No. 075-15-2020-788).
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Numerical analysis of 3rd and 7th order traps in quantum
control landscapes for some three-level and four-level quantum
systems

Volkov B. 0.1, Miachkova A. A.'*, Pechen A. N.!
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Quantum control is an important direction in modern science with various
existing and prospective applications in quantum technologies [1; 2; 5]. An impor-
tant problem in quantum control is the analysis of quantum control landscapes,
including estabolishing either presence or absence of traps, n-order traps, since
is helps to determine a correct algorithm for finding optimal control fields [3; 7; 8].
In this talk, we discuss our results with numerical analysis of control landscapes
for various quantum systems, including three-level systems with traps of orders 3
and 7 and four-level systems [9].

This talk presents our recent results on 3rd and 7th-order traps for some
three-level and four-level closed quantum systems with free and iinteraction
Hamiltonians of the form

a 0 O 0 v1 O
Hy=10 b 0}, V=1|vi 0 wv]; (1)
0 0 ¢ 0 v5 O
a 0 0 0 0 w2 wviz 0
o 0 b 0 O . ’Ufg 0 V23 V24
H=1g 0 c ol V7l vy 0 vsl )
0 0 0 d 0 w3 wv3 O
The dynamics of such systems are described by the Schrodinger equation
auf f f
v ar (Ho + f()V)U}, Ui =1 3)

We study critical points for the target functional Jo [f] = Tr(OULpoULT) —
max. Here py = i) (¢ is the initial state of the system, assuming it is pure, O is the
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target observable. Such a target functional describes a wide range of quantum
phenomena, e.g., breaking desired chemical bonding, creation of selective atomic
and molecular excitations, etc. A control fy € Lo([0,T],R) is a trap if fj is a
point of local extremum of the target control functional, but not global [6]. We
numerically investigate the control landscapes in a vicinity of some 3rd and 7th
order traps, finding significant differences between them. This talk is a part of a
larger research on the study of higher-order traps in quantum control landscapes.
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Asymptotics of the eigenvalues of seven-diagonal Toeplitz
matrices of a special form

I. Voronin'*, V. Stukopin?, S. Grudsky', M. Barrera!
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This work is devoted to the construction of a uniform asymptotics in the dimen-
sion of the matrix n tending to infinity of all eigenvalues in the case of a seven-
diagonal Toeplitz matrix with a symbol having a zero of the sixth order, while
the cases of symbols with zeros of the second and fourth orders were considered
earlier. On the other hand, the results obtained refine the results of the classical
work of Parter and Widom on the asymptotics of the extreme eigenvalues. We also
note that the obtained formulas showed high computational efficiency both in
sense of accuracy (already for relatively small values of n) and in sense of speed.
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Isomonodromic deformations on an elliptic curve

Vyugin I. V.
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We consider the problem of isomonodromic deformation of a 2 x 2-Fuchsian
system on a compact Riemann surface of genus g as an isomonodromic defor-
mation of a logarithmic connection in a rank two semistable bundle of degree
zero. Such a problem with fixed singular points was first considered by H. Es-
nault and E. Viehweg. In the case when the curve is elliptic, the isomonodromic
deformation of the twisted system is obtained in the paper of D. A. Korotkin,
J. A. H. Samtleben “On the quantization of isomonodromic formations on the
torus”. This deformation is given by a system which is equivalent to the Knizhnik-
Zamolodchikov-Bernard system.

Using an interpretation based on semistable bundles of degree zero, we de-
scribe the local structure of the theta-divisor of an isomonodromy deformation
on an elliptic curve, that is, the set of points where the deformation coefficients
tend to infinity.
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Generalized measures and symmetries in infinite-dimensional
spaces

Wang Yu

Moscow State University

wyu646534@gmail.com

According to Noether’s theorem, each continuous symmetry of a physical system
corresponds to a certain conservation law. Continuous symmetry is the invariance
with respect to a family of continuous transformations. We will start with a proof
of Noether’s theorem in a book published by Kleinert. In this book, all formulas
related to fields do not specify the domains in infinite-dimensional spaces, so
they need to be improved. Since invariances and conservation laws in ordinary
Euclidean spaces have been systematically studied, we study the translational
invariance of generalized measures in Hilbert space from a new paper.
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Nonlocal Problems with an Integral Condition for Mixed-Type
Equations

Zaitseva N. V.
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We study how a solution of the boundary value problem with a nonlocal integral
condition for a mixed type equation with singular coefficients in a rectangular
domain depends on numerical parameters occurring in the equation.

LetD = {(z,y) : 0 < z < l,—a < y < B}, wherel, , and [ are given
positive real numbers, is a rectangular domain. Set Dy = D N {y > 0} and
D_=Dn{y<0}.

Statement of the problem. Find a function u(z, y) that satisfies the following
conditions:

u(z,y) € C’(ﬁ) NC*(DyUD_);

e + (SEYNUyy + Dup + Thuy, =0, (y) €D4UD (1)

ylim yuy(z,y) = yl_l)r(I)l (—y) uy(z,y), 0<z<I;

u(@,B) = pl@), u(z,—a) = (), 0w <k
lim zPu,(z,y) =0, 0<|p|<1l, —a<y<p;

z—0+

l

/:Cpu(:c,y)dac:A, _agygﬂu
0

wherep (p > —1,p # 0), ¢ (0 < |g| < 1), and A are given real numbers; p(z) and
1 (x) are given sufficiently smooth functions satisfying the conditions

l l

/xpcp Ydx = /xpw(x) dr = A.

0 0
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A nonlocal boundary-value problem for Eq. (1) with ¢ = 0 was investigated
in [1] and [3]; with ¢ # 0 was investigated in [4] (see also the monograph [2]).
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Navier-Stokes equations, the algebraic aspect

Zharinov V. V.
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We show that the Navier-Stokes equations are subject to meaningful anal-
ysis within the framework of the algebraic approach to differential equations.
The resulting equations for finding algebraic characteristics of Navier-Stokes
equations, such as symmetries and cohomologies, are essentially complicated.
One may hope to find their partial solutions at least, especially using analytical
computational packets (Mathematica, for example).
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O yncJeHHO-aHAJIUTHYECKOM MeETOoAe AJA YPAaBHCHHUA
Broprepca
Bespoanpix C. U.'*, ukyaun C. B.1**
TPUIT Y PAH
" sbezrodnykh@mail.ru
" spikulin@gmail.com

PaCCManI/IBaeTCH IMPOCTPAHCTBEHHO OJHOMEpHAsA nepuoanvyecrad HadaJib-
HO-Kpae€Bad 3ajga4da 4Jjid YypaBHEHUA BIoprepca:

ou 0%u ou
E_)‘@ +U(t,$)%:f(t,l‘), .I‘e[—l,l], tE[O,T},
u(0,x) = up(x), u(t,—1) = u(t, 1), %(t, -1)= %(t, 1).

B nokJiaze npeacTaB/ieH HOBBIHM YHC/IEHHO-aHATUTHYECKUI METOI, OCHO-
BaHHBI Ha MICII0JIb30BaHNH SIBHO-HESIBHOI CXeMBI JUCKPETU3AIIH 110 BpeMeH!
U pellleHNH Ha KasKI0M BpeMEeHHOM cJloe JTUHeHHO! 3afauu 1711 0ObIKHOBEHHO-
ro nuddepeHnaIBLHOTO YpaBHEHUS C TIOCTOSHHBIMU KO3 (DHUIMEeHTaM.

HoBusHa rmogxona 3ak/II09aeTcs B aHATUTHIECKOM METOIE PEIIEHNsI BCIIO-
MoraTeJbHOM JIMTHEWHOM 3a/1a4! B KJIacCe HePEPBIBHBIX TEPUOJUYECKUX KyCOY-
HO-aHATUTHYeCKUX GYHKIMIT Ha oTpeske [—1, 1] c npuMeHeHneM IBHOTO BHUa
cooTBeTcTBYyIomIel (pyHKIMY I'prHa. 3P HEKTUBHOCTH TAKOI0 AaHAIUTUYECKOTO
MeTo/ia 00yC/IOBJIEHA TEM, YTO OH MMEET BCETO JIUIIh JTUHEHHYIO aITOpUTMUAYe-
CKYIO CJIO’KHOCTB 10 KOJTMYeCTBY [V y3JI0B IPOCTPAHCTBEHHON allIIpOKCUMAITIH.
Vcnosib30BaHNe UHTETPAJIBHOTO IIPECTAaBJIEHS pelleHus TI03BoJIsIeT u3be-
’KaTh IIOTEPU TOYHOCTH, KOTOpasi BOHUKAET BCJIEICTBYE IPUMEHEHU ST KaKUX-
JINO0 Pa3HOCTHBIX aIIPOKCUMAIINI TPOU3BOIHBIX HICKOMOTO PEIIEHUS 110 .
OTCyTCTBYIE TAKOTO POJA AMMTPOKCUMAIINI B BBIYUCIUTETLHON CXEME ITPECTAB-
JisieTcss 0cOOEHHO aKTyaJbHBIM B 3a/1a4aX, e KoaduimeHT npu crapiiei
MIPOM3BOIHOM 110 TPOCTPAHCTBEHHON IEPEMEHHOM SIBJISIETCSI MAJIBIM.

BhInosIHeHa YKCIeHHas peain3alysi IOCTPOeHHOr0 MeToa [2] 1 mpoBeieHO
€r0 COTIOCTaBJIEHHE C U3BECTHBIM TOYHBIM peleHueM [3].
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OTMeTHuM, YTO aHAJIOTUYHBIN IIOIXON IIPU pellleHUU CUHTYJISAPHO BO3MY-
IIIEHHO KpaeBoli 3a7a4u ObLJI IPUMeHeH B padore [1], rie B MHTErpaJbHOM
TIpEeCTaBJIEHUH UCIIOTH30BAJICS IJIABHBINA YIEH aCUMITOTUKY (pyHKIMHU ['prHa,
rocTpoeHHsbIi MeTonoM BKE.
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O cymiecTBOBaHHMH IJHTPONIUHHOTIO pellleHU:A 1151 ypaBHEHH A
C MEPO3HAYHBIM NNOTEHIIMAJIOM

Buabganosa B. ®.%, Mykmunos ®. X.1**

1 Hucruryr maremaruku ¢ BI] YOHUI] PAH

" gilvenera@mail.ru

*k

mfkh@rambler.ru

B oburactu 2 C R™ paccmarpuBaetcs 3anada HeifimaHa 1151 ypaBHEHUST
—div(a(z,u, Vu)) + bo(x,u, Vu) + by (x,u)p = f, f € Li(Q), (1)

e [ - HeoTpuliaTesbHass Mepa Pajona. Ha rpanune 0f) cTaBUTCA yCIOBHE
Hefimana: a(x, u, Vu) - n = 0.
BekTopHoe moste a(x, u, Vv) B (1) yroBiaeTBopsieT npu = € ) yCJIOBHUAM:

M(z,|a(z,1,y)|) < g(r) (G(z) + M(z,y)), reR, yeR™ G(z)e Li(Q)
a(a:,ny)-chOM(x,y)—G(x), TERv Co >07
(a(x,r,y)—a(x,r,z))-(y—z)>0,y7éz, yazERma T6R7 x €.

Kpowme Toro, mycThb KapaTeonopueBble GyHKIIUY b; yIOBJIETBOPSIIOT HEpaBeH-
CTBaMm:

[bo (2, 5,9)| < g(r)(Go(@) + M (2,y)), |s| < r,la| <r;
b1 (x,9)| < g(r)Ga (@), |s| < r,la <,
raoe éO € Ll,lOC(Q)v Gl S Ll,u,loc( )

bo(z,r,y)r > 0. (1)

ITycTs cyuiecTByeT Bosdpacramwiast ¢yukius g(r), r > 0, lim g(r) = oo, Takas,
4TO r—00

|b1(z, s)| > g(r), s =7, x €. (2)
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I[Ipocrpancteo H1,(2) onpenennm kak samMbikanue MHOskecTBa CS° ()
B *-cJ1aboii Tonostoruu npocrpancTsa Ly, (). TpebyeM, 4TOOBI IPOCTPAHCTBO
H1;(Q) He conepsKkaso KOHCTAHT.

OnpeaesieHne. JHTPOIUITHBIM pellleHreM 3aqauu HeliMaHa i1 ypaBHEHUsT
(1) HasbiBaeTcs GyHKIMsA u Takasi, 9T0 Ty (u) € Hi,(2) npu Beex k > 0 u ipu
Beex £ € C§°(€) KOPPEKTHO HEPABEHCTBO

/ (alw, u, Vi) - VT — €) + (bo(a, u, Vi) — f)T(u — €))da+
Q

+ /bl(az,u)Tk(u —&)du <0.
Q

Teopema. [IycTb BbIIIOJIHEHBI YCJIOBHA HA a, b;, TOTA CYI[€CTBYeT IHTPOITHH-
Hoe perrreHue 3agadn Herimana 1151 ypaBHeHUA (1).
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KondopmHoe oTobpaskenne L-00pa3Hoii odracTu
B aHAJIMTUYECKOM BHJIE

Buaiacos B. 1.}, Ckopoxopos C. JI.!
1119333 MockBa, wi1. BaBuisioBa, 44, UL 1Y PAH, Poccua

ITpo6aema mapameTpoB uHTerpana Kpucroddens-IliBapia ajst KoHGOPM-
HOT0 0TOOpaskeHUs1 f KaHOHWYECKOH 00J1acTi Ha L-06pa3HyIo pelleHa B aHa-
JINTUYECKOM BH/Ie IIPU IIPOH3BOJIbHBIX F€OMETPUYECKUX ITapaMeTpax 00J1acTu.
HewsBecTHbIN IpooOpas npeacTaBJieH B BUIe PSAa II0 CTENIeHsIM MaJjIoro Ia-
paMeTpa Cc SBHO BBIIMCAaHHBIMU K03 prnmenTamMy, A1 KOTOPBIX ITOJIydYeHa
olleHKa ux Mofy/isi. Haiimenbl acuMnroTuky 1iist adderra kpoyaunra (CKy-
YUBAHUS IPOOOPA3OB), SIPKO BHIPAYKEHHOTO /IS YIJIMHEHHOM o6Jtactu. J{iis
BBIYMCJIEHHUS OTOOpaXkeHus f 1 06paTHOro K HeMy f ! 1aHbl psApbl ¢ ABHBIMU
ko3 punrenTamu, 06J1aCTH CXOAUMOCTH KOTOPHIX B COBOKYITHOCTH ITIOKPHIBAIOT
BCIO (3aMKHYTYyI0) oToOpaskaemMyio obsacts. CoueTanue ¢ ApoOHO-INHENHBIMU
OTOOpAKEHUSIMH U 3JITUIITHIECKUM CHHYCOM IT03BOJIAJIO MTOJIYIUTh 0TOOpa-
sKeHHEe MOJYIVIOCKOCTH, Kpyra U MPsIMOYTOJIbHUKA Ha L-00pa3HyIo 00J1acTh.
YucyieHHas peaaru3alys OCTPOEHHBIX 0TOOpaskeHU IToKa3aJjia BRICOKYIO a-
(bekTHBHOCTH IpUMEHSIEMBIX METOLOB.
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3agaum onpejesieHUsA KBa3UCTALMOHAPHBIX
3JIEKTPOMAarHUTHBIX IOJIE€H B CJ1a00 HEOJHOPOIHBIX Cpegax

Kamunus A. B.'*, TioxTura A. A.!, Masos C. A.!
! Huzxeroponckuri rocynapcrseHsbii yausepcurer um. H. H. JlobaueBckoro

" avk@mm.unn.ru

Jl1s1 omMicaHUs 97IEKTPOMArHUTHBIX SIBJIEHUH IIPU MOJIeTMPOBAHNY 3HAYM -
TeJIbHOHM 4acTH COBPEMEHHBIX TEXHOJIOTUYECKUX IIPOI[ECCOB UCIOJb3YIOTCS
KBa3UCTaLMOHAPHbIE TPUOJIMIKEHH I CHCTEMBI ypaBHeHUI MakcBesiia [4].
HepenaTuBucTckoe MarHuTHOE NPUOJIMYKEHNE 3aKJ/II04aeTcs B IpeHedpeske-
HHUH TOKOM CMEIIeHUS ¥ XapaKTEPHO JJIsI MeIJIEHHO TPOTEKAIOIIUX IIPOLIECCOB
B CpeJiax C IOCTATOYHO BHICOKOM IPOBOAUMOCTHIO [1; 5]. HepesnsituBucTCcKOE
3JIEKTpUYecKoe MpuOIMsKeHre, hopMaJbHO 3aKJII0YAOIIEecs B yCJI0BUY IIOTEH-
MAJIbHOCTHU 3JIEKTPUYECKOTO I10JIs1, UCIIOJIb3YeTCs AJ1s1 OMMCAHUS JOCTaTOYHO
MeJIJIEHHBIX IIPOLIeCCOB B CpeJax C HU3KOU IIPOBOJUMOCTBIO, B YaCTHOCTH, IPU
MOJIESTUPOBAHUHY 3JIEKTPOMArHUTHBIX IIPOIIECCOB B HIYKHUX CJI0SIX aTrMocde-
pel [3; 7]. KBasucranuoHapHoe npub/IrKeHrne, 00001aIee KIacCu4ecKue
HepeJIITUBHCTCKIE KBA3UCTAI[MOHAPHbIE IPUOJIMKEHN S, TOJTYYIIJI0 Ha3BaHue
npubsuskenue Japsuna [6; 10]. B aToM npubInsKeHUN BIIEJISIOTCA TIOTEHITH -
aJIbHasA U COJIEHOUAA/IbHASA KOMIIOHEHTHI 3JIEKTPUYECKOro I10JIAA, B CUCTEME
ypaBHeHUU MaKcBeJlIa CoXpaHsieTcs MOTeHI[UaIbHAs YaCTh TOKA CMEILeHUs.

Bormpocsk! nepapxmy KBa3uCTaIMOHAPHBIX IPUOIMKEHII pacCMaTpUBaloT-
s, B YaCTHOCTH, B paboTax [1; 5; 6; 8].

B Hacrosmiet pabote 1151 CpaBHEHUS PEIIeHNH 3a7a4 OnpeaeeHNsI KBa3UC-
TallMOHAPHBIX 3JIEKTPOMAarHUTHBIX 110J1eli B HEOMHOPOJHBIX CpejaX UCI0JIb3yeT-
cst mapamerp ||grado ||, xapakTepusyonuii crerneHb HEOTHOPOTHOCTH CPEBI.
B ciy4ae cs1abo HEOZTHOPOIHBIX Cpel] AaHATU3UPYETCs ACUMIITOTUYEeCKOe pas-
JIO}KEHVEe 39JIEKTPOMAarHUTHBIX ITOJIEN B Pa3JINYHBIX TPUOJIIKEHUSIX TI0 3TOMY
rnapamerpy.

[Tpenmnaratorcsi 1 060CHOBBIBAIOTCS UTEPAIIOHHbBIE AJITOPUTMBI IIOCTPO-
€HUSI IPOME)KYTOYHBIX KBAa3UCTAI[OHAPHBIX IPUOJ/IMKEHUHN, CBA3BIBAIOIINX
KBa3UCTAIlMOHApHOE NpubJmKkeHre JlapBrHa U KJIACCHYECKHE HEPEJISITUBUCT-
CKV€e KBAa3HUCTAI[OHAPHBIE TPUOJIMKEHUS.
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IonmynAIMOHHAA reHeTHKA ¥ TEOPU s 00yYeHHU T

Kossipes C. B.

Maremarnyeckuii HHCTHTYT uM. B. A. CrekyioBa PAH

kozyrev@mi-ras.ru

PaccMoTpeHa MofieJib OMYJISIIMOHHOM reHeTUKY ThMa JIOTKU-BoJsisrepphl ¢ My-
TaIMsIMU HA CTATUCTUYECKOM MHOT000pasuu. MyTaryuu B MOJIeJIN OIHCHIBa-
10Tcs1 mudysreit Ha CTaTUCTUYECKOM MHOT00Opasnuyl ¢ TeHEPATOPOM B BUIE
omeparopa Jlamnaca-Bessrpamu ¢ MmeTpukon Puriepa—Pao, To eCTh MOJIEb
00 beHSAET TONYIAINOHHYIO TeHETUKY ¥ MH(MOPMAIMOHHYIO reoMeTpuIo. Ta-
Kasi MOJIeJIb ONKChIBaeT 0000IIeHe MO/ TEOPUN MAIITMHHOTO 00y4IeHusl,
MO[TeJTH TIOPOKJA0IINX COPEBHOBATENbHBIX ceTelt (GAN), Ha cy4ail momyJisi-
IIUH IOPOXKIAIOIINX COPeBHOBATEJIBHBIX ceTell. BBeiéHHasA Moiesib ONUChIBAET
KOHTPOJIb IEpe0OyYeHus 151 TOPOKIAIOIINX COPEBHOBATE/IHHBIX CETEN.
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AcumntoTuku pemieHn nugdepeHIuaIbHBIX YypaBHEHU N
B OKPECTHOCTH HPPETYJISIPHBIX OCOOBIX TOYEK B IIPOCTPAHCTBE
pyHKIMI £-3KCTIOHEHIIHAJIBLHOTO pocTa. [Ipo6aema [Tyankape

Koposuna M. B.

MT'Y um. JlIomoHOCOBa

betelgeuser@yandex.ru

[Tpob6eMa moCTpoeHUsI pABHOMEPHBIX aCUMIITOTHK peleHuil nudepeH-
[UATbHBIX YPAaBHEHUH C TOJIOMOP(PHBIMHU K03 DUITMEHTAMU B OKPECTHOCTH
HUPPETYISIPHBIX 0COOBIX TOUEK, B TOM YK CJie 0ECKOHEYHOCTH SABJISETCS KIaccuye-
CKOM 3a7jauell aHAJIMTHYECKOU TeOpHH U B 00111eM Brjie 6bLi1a cpopMyIrpoBaHa
Iyankape B paborax [6; 7]. B aTux pa6orax [Tyarnkape copMyIHpOBaJI BOIPOC
0 0011IeM BHJIe aCUMIITOTHYECKHX PA3JIOKEHHUI B OKPECTHOCTH UPPETYISAPHON
oco6oii Touku. OTBET Ha 3TOT BOIPOC TA€TCS B HACTOsIIIElN padoTe. B qaHHOM
paboTe MbI TOCTPOUM OOIIINH BUJT ITUX ACUMIITOTHK B IPOCTPAHCTBE (DYHKIIMI
k-sKCIOHEHTIMATBLHOTO pocTa. bes orpaHmyeHus1 00ITHOCTH OyIeM CUUTATh, YTO
0c0001 TOUKOH ypaBHEHUS SIBJISIETCS HOJIb.

PaccmoTpuM ypaBHeHHE

Qn (x)( ) u(r) +an—1 (z )(%)n_lu(m)'i‘ldom (1)
+a; (x )(di)lu(m)—&-...—i—ao(x)u(m):O

3mech a,, () — QyHKIHY roJIoMOpP(HBIE B HEKOTOPOI OKPECTHOCTH HYJISI.

Lles1bI0 HAIIIETO UCCIIEA0BAHMS SIBJISIETCSI IOCTPOEHIE ACUMITOTHK pellie-
Huil ypaBHeHus (1) mpu ¢ — 0, B IpeaHoIoKeHnH, 4To & = 0 SBJISIETCS UPPETY-
JISIPHOU 0c0001 TOUKOH. OBIINI BT aCUMIITOTUK B OKPECTHOCTH PETYIISIPHBIX
0COOBIX TOUEK XOPOIIIO U3BECTEH, 3TO KOHOPMAaJIbHbIE ACHMIITOTHUKH.

Kak nokasano B pabore [3] ypaBaenue (1) c ©pperyasspHoit 0cO6eHHOCTHIO
B HyJ/I€ MOJKET OBITh 3aMKCAHO B BUE

ﬁu(x):( }C ’f“d‘D +Z ( 1 ’C“i) uw(z)=0 (2)

Ine k € N, a (z) — dynkmu romomopdHbIE B OKPECTHOCTH HYJISA. B pabo-
te [1] HaliIeHo MUHUMAJIBHOE HaTypaabHOE k. 3aMETHUM, YTO TOT 5Ke Pe3yJIBTaT
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OyzeT u B cay4ae, Korga Koo GUIMeHTsI a,,—1 () 6yayT uMeTh MeEPOMOP(PHYIO
0CO0EHHOCTH B HYyJIE.

Onpegxenenue. CHMBOJIOM AU (PepeHIasHOro oneparopa H Hassizaercs
¢GyHaEIIHA

H (r,p) = p" + 3.7 a? (1) p'. OcHoBHBIM cuMBOIOM Oneparopa H HasbI-
BaercsA HOJTHHOM

n—1
Hy(p) = H (0,p) =p" + > _a (0)p".
=0

Borpoc o Bujie paBHOMEPHON aCUMITOTUKY B OKPECTHOCTH MPPEry/IAPHOI
0C060H TOUKH TPOIIE BCETO PEIIAETCsI B Clydae, KOraa KOPHUA OCHOBHOTO CHUM-
Bosia Hy (p) siBsiiorcst mpoctbiMu. B paborax [3; 5] J0ka3aHo, YT0 aCUMITOTHKU
B 9TOM CJIy4ae UMEIOT BUJL

n o0
(L .
E el g E Afack,
i=1 k=0

e P; (y) = \iy* + af1y#=1 + ... + aly, 0, — xommekcroe umcio,
> re o A¥a® — acummnrornueckuit psin. Ilpoctomy j-My KopHio mosmzOMa Hy (p)
OYIeT COOTBETCTBOBATH ACUMIITOTHYECKUH 4ieH Buza el () z07 > reo A?mk,
j =1,...,n.Bciy4yae KpaTHbIX KOpHEe# 3a7a4a MOCTPOEHUsI ACUMIITOTUK 3HAYH -
TeJILHO CJI03KHee. B paborax [2; 4] mOCTpOEHbI aCUMIITOTUKH PEIIEHU B OKPECT-
HOCTH OECKOHEYHOCTH B POCTPAHCTBAX (DYHKIINNA IKCIIOHEHIIMATBHOTO POCTA
n1s1 ypaBuenust (1) B cayvae, koraa a, (z) = 1. 3ameTum, 4T0 6€CKOHEYHOCTh
BOOOIIIE TOBOPSI SIBJISIETCS UPPETYISIPHON 0CO00¥ TOUKOM. B 0b111em citydae
Ha BOIMPOC O BU/I€ ACUMIITOTHK B OKPECTHOCTHU MIPOU3BOJILHOM UPPETY/IAPHOM
0c000¥1 TOYKHU OTBEYAET

Teopema. JIr00as aCHMITOTHKA COOTBETCTBYIOIIIAA HYJIEBOMY KOPHIO OCHOB-
HOI'0 CHMBOJIa ypaBHEHHA (2) B IPOCTPaHCTBe PyHKINH K-9KCIIOHEeHI[HaIbHOI'O
pocrTa npejcTaBuMa B BHI€ CYMMbI aCHMIITOTHYECKHX YJI€HOB BH/A

1 , Sk
u; (x) =~ exp (Pi (36 E )) 2% Y 22 abxlii=l,...n l; € N, o; — KOMILIEKC-
HbIe yucaa, P; (x) ABIA€TCA HOJTHHOMOM CTEIeHb KOTOPOIo HE IIPEBBIIAET
(o) 7 .1 %)
(k—=1)1;, Y g aj,x" — acCHMIOTOTHIEeCKHUH PAJT.
3ameTHM, 4TO KOPEHb OCHOBHOI'O CUMBOJIA P; # () CIBUTAETCSI B HOJIB C I10-
MOIIBIO 9KCTIOHEHIMATLHOM OJICTAHOBKY U () = exp —fru; ().
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Teopema Jjoka3aHa C IOMOIIIBIO IPUMEHEHHSI METOOB PeCYpPTeHTHOIO aHa-
JI3a ¥ MeTOJja IOBTOPHOI'0 KBAaHTOBAHN I, OCHOBOU KOTOPOTO SIBJISIETCS UHTe-
rpajibHOe npejcrasaenue Jlamiaca—bopeJs [8].
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O DMJIMHAPUYECKUX 0TOOPA’KEHUAX C yOeraloIUuMH OpOuTaMHu
Y yIVIaX IOBOPOTA.

KouepruH A. B.

MTI'Y um. M.B. JIomoHOCOBa
a.kochergin@gmail com

Kak u3BeCcTHO, 151 TUINHIPUYECKOT0 0TOOpaskeHUsI Hajl MPPAlOHATBEHBIM
II0BOPOTOM OKPY>KHOCTH C IVIaJKOU (pyHKIIMeH cripaBeIrBa TeopeMa O BO3-
BpalleHnu Tpaekropun. OTHAKO, HAJl JTIOOBIM HPPAIOHATHEHBIM IIOBOPOTOM
CYIIECTBYIOT HEIPEPBLIBHBIE IUINHPH-YeCKIe 0TOOpakeHHs ¢ yOeraomumMn
B 6eCKOHEeYHOCTBh opbuTaMu. I1epBbIil TaKOU IpUMep /11 KOHKPETHOTO yIVIa,
TIOCTPOEHHBIN HECKOJIBLKO B IPYTUX TEPMUHAX, BOCXOAUT K A. [Tyankape. [To3:ke
OBLJIM IOCTPOEHBI IIPUMEPHI 7151 JII0O0T0 HppPalliOHATBHOTO YIVIA; IIPYU 9TOM HU3Y-
YaJIUCh JOIIOJHUTEJIbHbIE CBOMCTBA 3TUX OTOOpasKeHUH, Takue KaK, HallpuMep,
CKOpOCTB yOeraHusi opOUT MJIM MaCCUBHOCTh MHOKECTBA TAKHUX OPOUT.

Cy1ecTByeT psif IPUMEPOB MUJIMHIPUYECKUX OTOOpaKeHUH, MMEIOITIX
yberaroiyie opOUThI, ¢ PYHKITUSIMH, YIOBJIETBOPSIONIMMHE ycI0BUO ['€baepa.

PaccmarpuBaeTcsi 3aBUCUMOCTD CYIIIeCTBOBAHUS U CBOMCTB TaKUX OTOOpa-
SKeHMH 0T IoKasaTesisi [é1baepa 1 CBOMCTB yIvIa IOBOPOTA.
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00 yc/10BUAX CyIIECTBOBAHM I TPAHHYHOTO 3HAYEHH S
y NOJIMTapMOHHUYECKOH (PyHKIUH

MapkoBckwuii A. H.

Kybancknii rocygapcrBeHHbIH yHuBepcHTeT, KpacHomap

mrkvsk@yandex.ru

JlorkaspIBaeTcs IpeicTaBIeHe m-rapMOHUYeCKOU B 06/1acTH () (PyHKIIUN
B BHJIe CYMMBI OPTOTOHA/IBHBIX IOJINTAPMOHUYECKUX CJIaraeMblX, ycTaHaBJIMBa-
oIriee B3aMMHO-0JHO3HAYHOE COOTBETCTBHE C M -TAPMOHUYIECKUMU B () PyHK-
LYAMUA. YCTaHABJIUBAETCA CBA3b C IpencTaBieHueM Anbmancu. [lokasana cripa-
BeIJIUBOCTH TeopeMbl B. I1. MuxaiiysioBa o CyllleCTBOBaHNU I'PaHUYHOI0 3HAUe-
HU y IOJIUTapMOHNYECKON (DYHKIIMH, IIPU JOCTATOYHO OOIIIUX IIPEII0I0sKe-
HUAX.

1.ITyctb @ C R™ —orpannyenHas 06J1acTh C JOCTAaTOYHO IIAKON rpaHUIleN
S = 0Q. O603HauUM

em(Q) = {Emn(z—y) |z €Q,yc RM\Q}, m>1

MHO’KECTBO CABUIOB (DYHIaMEHTAIBHOIO PEIIeH s 1 -FaPMOHUIECKOT0 YpaB-
Henws [1] u G,,, (Q)) - 3amMbIkaHMe TUHEHHON 060/104KY span {e,, (Q)} B HopMe
L2 (Q). Tonyuennoe MHOKeCTBO G, Q) OyieM Ha3bIBATh MOJIUTaPMOHUYECKUM
MIOIIPOCTPAHCTBOM.

2. PaccmotpuM passokeHue Lo(Q) = G1(Q) @& N1(Q). O6osnauum A :
Lo(Q) — N1(Q) - cooTBeTcTByIOMIEE pacuMpenue oneparopa Jlamraca, a A~ ! :
N1(Q) — L2(Q) - obparubiit oneparop. EcrectBeHHBIM 06pasom mist k > 1
onpegensiercs crenenb A~F,

Teopema 1. Eciu | € G,,(Q), (m > 1), TO cyIIjecTByrOT rapMOHHYECKHE U3
G1(Q) ¢pyrrmuu go, g1, ..., gm—1, TAKHE 9TO

f=go+A g 4...+A " Dg (1)

H Takoe IIpecTaBjIeHHe eHHCTBEeHHO.

B pa6ore [4] mostydyen yacTHBIN Ciry4aii passioskeHus (1) AJist moraHa uTH-
4YecKux QYHKIHI B efnHUYHOM Kpyre. [Ipencrasnenue (1) saBisiercst miobasb-
HBIM IIPeJICTaBJIeHNEeM IOJIUTapMOHNYeCKOH (pyHKINY B 06J1acTH () B OTIIMYHE
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OT pasJIoKeHUsT AJIbMAHCH [5], KOTOPOE, KaK N3BECTHO, ABJISIETCS JIOKATbHBIM
mpeicTaBJeHreM. BoJiee TOTO, B OTJIMYKE OT Pas3IoKeHUsI ATbMaHCH, pasJioyKe-
uue (1) ABJIsSETCS OPTOrOHANBHBIM. [TpY IOMOIIY PasJIoMKeHus ATbMaHCH B [1]
M3Yy4aeTcsi (PAHUIHOE [IOBEIEHHE TOJIMTaPMOHWYECKUX (DYHKIINIA B 3aBUCHMO-
CTH OT TPaHWYHOT'O TTOBEJEHNS €€ KOMIIOHEHT AJTbMaHCH.

3. CupaBeJIuBO CJIeyIOIee YTBEPsKIeHNUE.

Teopema 2. IIycts k > 1, Torga

A™"gr = g * Ex — Pe(gr * Exn),

rae Py, — npoerrop Ha nognpocTparcTBo G (Q).

Ha ocHoge cBoiicTs oneparopa A~%, k > 1 uccyieayercsi rpaHUYHOE OBE-
JleHre TOJIMTapMOHUYeCKIX PYHKIIUH 13 mpocTpanctsa G, (Q). TlosyueHHbIE
CBOICTBA IMO3BOJISIOT YCTAHOBUTH CIIPABEIMBOCTH TeopeMbl B. I1. Muxatino-
Ba [2; 3] - 9KBUBaAJIEHTHOCTb CYIIeCTBOBAHUS Lo -TIpeiesia HOJUTapMOHIYECKOH
(pyuknmm Ha rpanune obsactu () u ee Lo-KOMITAKTHOCTH BOJIM3Y TPAHUIIBI.
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JJuHaMHuUYecKue CBOMCTBA pEeHOPMAJIN3allUOHHON I'PyNNbI
B 000011eHHOH (DepMHOHHOH HepapXUIECKOI MO e TH

Muccapos M. JI.'*, Xaitpyaauan . A.1**

! Kaszanckwuii (Ipusosrkckuit) denepaibHbIH YHHBEPCHTET
" mukadas.missarov@yandex.ru

" dimahajrullin@outlook.com

Iycte T = {0,1,2,...}u Vi ={j €T : k-2° <j < (k+1)-2°}
rnek € T, s € N = {1,2,3,...}. Nepapxu4ieckoe paccrosiaue ds (i, ), i,j €
T,i # j ompeneneHo, Kak da(i,7) = 2509, rme s(i,5) = min{s : ectbk €
T rakoe,uto i, j € VE}ycte T2 =T x T, k = (k1, k2) € T2, ViE = {(j1,j2) €
T2 - ki -2% < 7 < (/ﬂ1+1)'28,k2'28 < g2 < (k2+1)'25}.l[ﬂﬂ.7[}0-
ooro k = (ki,ko) € T?,1 = (l1,ls) € T? k # [ onpeneneno s(k,l) =

ax(s(k1,11), s(ke,l2)). Nepapxudeckoe paccrosiuue Ha T2 ONpeiesieHo, Kak
dy(k,1) = 25V Paccmorpum 4-KoMIoHEHTHOE (hePMUOHHOE TOJIE 1) (i) =
(1(3),1(3),02(4),102(7)), i € T?, rae Bce KOMIIOHEHTbI KOTOPOTO, SABJISIOTCS
obpasyromumu anrebpst [paccmana.

JeticTBre peHOpMaNIU3aoHHOH rpynnsl Kaganosa-Busbcona r(a) Ha ¢*
onpenenesieTcss popmyitoit o* (i) = (r(a)*) (i) = 272 3 *(j), tae

JeV
a € R — mapaMeTp peHOPMIPYIIIIbL.

Omnpenesnum caenyomue Gyakmun Ha T2: d(k, [; \) = do(k, 1), ecnmu
8(/61, ll) 75 S(kQ, lg) d(k, l, )\) = )\dQ(k l) ECJII/IS(kl,ll) = S(kg, lg) f(k, l, A; a)
d*(k,l;N), eciiu k # 1,  f(k, kA a) = m A — IefCTBUTENbHBIN
mapametp, A > 0. B pa6ore [1] mokasamHo, 4T0 raycCOBCKOe (hepMUOHHOE IT0JIe
C HYJIEBBIM CPETHIM ¥ OMHAPHOH KOPPeNAIHOHHOH byHKIWMEH (1, (k) (1)) =
Snmf(k,N;a—4), n,m=1,2, k,l€T? ned,,, — cumsoa Kporekepa,
WHBAapUaHTHO OTHOCHUTEJILHO MPe00pasoBaHus PEHOPMIPYIIIIEI C ITAPaMETPOM
a.

HerayccoBckue moJist OyieM OIMCHIBATE C IIOMOIIBI0 JO0ABJIEHUS K BBIIIIe-
OIMUCAHHOMY rayCCOBCKOMY IIOJIIO JOKAJIBLHOIO IIOTEHIIAATA, IPEICTABIEHHOT0
B BHUJl€ I'PACCMAHOBO3HAYHOM IIJIOTHOCTH «CBOOOTHOM MephI» 00IIero Buaa

u(¥*) = co + c1(P10) + Pathy) + cathy 1y Pathy.
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BbIYNC/IEHNs IOKA3BIBAIOT, YTO JefCTBHE TPE0OPas0BaHKsl PEHOPMIPYIIIIbL
Ha HEerayCCOBCKOE I10JI€ CBOJHUTCS K 0TOOPAsKEHHIO B IIPOCTPAHCTBE K03 duim-
’ ’ ’
eHToB R(«;0): R(a;d)(co, c1,02) = (cg, €1, ¢9), THE

’ ]. 5
co = c(6—1) 2+ cher (—40%+65 —2) +cpea (62 =5+ Z)+cgcf(552 —-30— ZH—

5 1
+caereg(—26% =5 +1) + c%cg(z + 5) + coci(—20% — 35 + 3)+
52 3 3 52
+COC?C2(E+55_5>+COCIC%(_5_1)+%+C%(Z+§)+C?CQ(_5_1)+
/ 5236 1 752 215 7
¢ = 7(0301(5—1)2—1—0302( ————— +c cf(—7+7—1)+c3c1c2
52 5 1 752 30 3 5?2
Z—54’5)+C()C?(7—2(5—1)4-000%62(—3(52—?4-5)4‘00016%(54-26)4‘
_362 7 3

5 1 62 0
+coc§(—1— 1)Jrc‘f( T—26+2)+c§02(5+4é—1)+c§c§(—z— Drac

82 5 1. 5,32 35 3

3c3c3
4 )
562
——26
(%5-—20)+

+cpes(—

),

Cy = 72(0802(2 3 + Z) + cocl(T - + Z) + cierea(—26% +35 — 1)+
2 o (362 1 3 2 2 2 3
+ cjcs e 0+ 3 + cocy(—20° + 36 — 1) + cociea(46” — 26 — 5)4—
52 5 1 562
+ cocrca(—26% — 54+ 1) + cocg(z + B + Z) + cil(T —6)+
362 116 5
+ 3ea(—20% — 36 + 3) + 23 ( Tt T +cres (=25 —2) +c3)

31ech § — mapaMeTp, 3aBUCAIIMIH OT « ¥ A, 7 = 2% 2. B 1oKJ1afie MbI OIIUCKI-
BaeM MHBAapHUAHTHbIE MHOKECTBA OTOOpaskeHust R(«;¢). JIerko BUAETH, YTO
touku Ag = (1,0,0) u A; = (0,0,1) ABIAIOTCA HEMOABUKHBIMHU TOYKAMHU
orobpaskenusi R(«a; ) npu Bcex o u §. Touka Ay COOTBETCTBYET IayCCOBCKOM
HEeTOIBUKHOH Touke. Touke A; COOTBETCTBYET MJIOTHOCTD u(*) = 11 ¢baths
(rpaccmanoBa gesbra-(pyHKIMs). MbI OMKUCHIBAEM TUHAMUKY OTOOpasKeHUs
peropMrpymnnst R(«; §) B OKPECTHOCTH 9TUX HETIOIBUKHBIX TOUEK.

Pabora BrIIo/THEHA 3a cUeT cpeAcTB [IporpaMMbl CTpaTeru4ecKoro akajie-
muyeckoro jgugepctsa Kazanckoro (IIpuBoJkckoro) genepasbHOrO YHUBED-
curera (I IPHOPUTET-2030).
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K Bompocy o BJI0}keHHH T'HJIb0EepPTOBBIX IPOCTPAHCTB
C BOCIIPOU3BOJAIINM AAPOM

HanaJikos B. B. (ma.)'*, HysiTos A, A.1¥*

1 Hucruryr maremaruku ¢ BL] YOHUI] PAH, HI'TY um P E. AjtekceeBa
" vnap@mail.ru

" nuyatovl aa@rambler.ru

Bo MHOrHX 331a4ax KOMIIJIEKCHOTO aHAIM3a 4YacTO BOSHUKAET BOIIPOC, OyeT
JIA JaAHHOE THJIHOEPTOBO MPOCTPAHCTBO C BocpousBoasium simpoM (RKHS) co-
nepskarbes B 6osiee mupokoM RKHS. M1 ricciieyem cienyronnyto 3agayy. [Tyctsb
nano Hekoropoe RKHS H; cocrosiinee n3 pyHKIUHN, 3a/JaHHBIX HA HEKOTOPOM
MHO>KecTBe Touek ()1 C C". Takske numeercs HekoTopoe RKHS H; Takske cocTo-
smee 13 PyHKINH, 3aJaHHBIX HA MHOYKECTBe Touek {); C C”. Bompoc: kakue
YCJIOBUS TAPAHTUPYIOT BJIOKeHNe TPocTpaHCcTB H1 C Hy? MBI pacCMOTPUM 3Ty
3aJja4y B HECKOJIBKO ApPYyroi nocranoBke. [Ilycts H — HEKOTOpOe rujiboepToBO
IIPOCTPAHCTBO C BOCIIPOU3BOIAIINM SIAPOM, COCTOsAIIEE U3 (DYHKIIUH, 3a1aH-
HBIX Ha MHOKecTBe ) C C™, m > 1, T.e. yiA IPON3BOJIBHOU TOUKHU £ € )
(byHKIMOHAT ¢, CTABAMMN B COOTBETCTBUE TI000H pyHKuuu f € H 3HaueHHe
dyukiuu f B Touke £ € (), ABJsIeTCS JUHENHBIM U HEIIPEPBIBHBIM (DYHKIINO-
HaioM Hax H. [Tpeanosnoxum, 4o {e1 (-, &) ecq,, {€2(+, &) }ecq, — HeKoTOpBIE
TIOJTHBIE cucTeMBI QyHKIUN B H, 21 C C", n > 1. O603HaYUM

7)Y (er(2), Huvze, H={]f, feH},
(. F)a = (P | Fillg = Vhille Yo fe H,
F2) & (ea(2), vz e u, H=A{], feH},
FoF)a ™ (for f)us |l = Whlle YA, fo€ B

Heo6xonuMo HalTH yCJIOBUE, IPH BBIIOJHEHUH KOTOPOTO, TpocTpancTsa H u H
obsamaloT cBoiictBoM H C H, T.e. H Kak MHOKeCTBO (PYHKIIUH CONEPSKUTCS
B H n Haiinercst mocrosgsaHasa C' > 0 Takasi, 4To

Ifllz < Cllfllg Vf€H.
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YrBep:kaenue 1 /11 Toro urobsr H C H HE06X0qHMO H JOCTAaTOYHO, YTOOBI
HareJIcs JTUHEeHHbIH HelpepbIBHBIH onieparop A: H — H Tako#, 4To

A:es(,2)—=e1(,2) Vze Q.

YrBep:xaenue 2 ITycrs {e;(-, 2) }.eq,, j = 1,2 - ABe opTonogo6HbIe CHCTE-
MBI pa3JI0KEHUA B IPOCTPAHCTBe H ¢ OTHO¥ U TO¥ Jke Mepo# (i. [Ipeqimonoxmm,
4TO HaHAeTCA JIMHEeHHBIH HellpepbIBHbIH omeparop T : H — H Tako#, 4ro
cucremsl pyarmmii {e; (-, z)}.cq,,j = 1,2 cormacoBaHsI c oneparopom T, T.e.

(e1(,21),€2(y 22))m = (e1(+ 22), Tea(, 21)) V21,22 € .

Tornma H CH.

CiiegyeT OTMeTHUTB, 4TO Bonpoc coBnaaenus RKHS panee usyyasnca aBropa-
M B paborax [1; 3]. B omiiuuu oT pe3ysisratoB aTHUX paboT, oneparopsbl A u T
B YTBEP>K/IEHUH 1, yTBEP>KIeHUU 2 He IPeAI0JIaraloTcsi o00paTuMbIMu. B mokJia-
Ile 00CY3K/IaI0TCSI BOSMOSKHBIE IPUMEHEHUsI TT0JTyYEeHHbBIX PE3YJIBTATOB, B YaCT-
HOCTH, Oy/IeT pacCMOTpPEeH BOIPOC O ciefax (yHKINH U3 TpocTpadcTBa baprma-
Ha - ®oka Ha pemrerkax @on Heiimana (cM. [2]).
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3anauu reopuu unceJ B KTII Ha pemnérke

B. B. HaymoB

MockoBckuit pu3HKO-TeXHUIeCKHH HHCTUTYT

naumov.vv@phystech.edu

[Ipu poBeIeHUH UCCIeTOBAaHMUI B 001acT KBaHTOBOH Teopuu moJist (KTIT) na
pemérke OblJIa OOHApy)KeHa U loKa3aHa MaTeMaTuyecKkas TeopeMa.

[Tyctb Z(N) — KOJbII0 OCTATKOB JesieHusi Ha [N. OGBIYHO MBI UCIIOJIB3YEM
npencrasnenue suga Z(N) = {0,1,2,...,N — 1}.

PaccmorpuMm d-mepHyto pemétky Z4(N) = Z(N) x Z(N) x ... x Z(N).

d
ITyctb cnam (k), Tme m € N, — uucso y3mnoB &€ = (£1,&a,...,&4), THEE; €
d
Z(N), pemétku Z*(N) Takux, uto Y &M =k (mod N).

i=1
Teopema 1 /[ npousosbHoro N npud > 3, ugaa N = 2" npud > 2, rge
neN
Vk € Z(N) CNdQ(k) =0 (mod N)

B mokasareJsibCTBe 3TON TeOpeMbl PACCMOTPEHBI YeThIpe CIydas:

1. N — mpoctoe 4ucso. JIjis1 3Toro cjaydasi TeopeMa JoKa3aHa C IIOMOIIbIO
NpOU3BOIAMINX (DYHKIUI U CUMBoJIa Jleskanapa.

2. N = p", rne p — npoctoe uucio, n € N, n > 1. JIjs 1okasarejabCTBa UC-
N10JIb30BAH MEeTOJ UHAYKIINY, IJe IIpeIoJiaraeTcs, YTo TeopeMa BbIIOJTHEeHa
s N = p"~2 p"~! a B kauecTBe 6a3bl B3ATO BHINOJIHEHNE TEOPEMBI JIJIS
n = 0, 1. Mcrosib3oBaHo pa3brueHne pemIéTKy Ha JBe 4acTH, OOHyJIeHe
KOJINYECTBAa y3JI0B JJOKa3aHO I KayKIOM U3 HUX, U3 4ero 3aTreM cJjeayeT
00OHYJIEHE KOJTMYECTBA Y3JIOB JIJI51 BCEH PElIETKU.

3. N =2"rmen € N,n > 1. [lokaszaTeJIbCTBO aHAJIOTUYHO IIPEABIAYIIEMY
cJIy4alo, HO B KaueCTBe IIPeIIoJI0KeH s HHIYKIINN B3SITO BBIIIOJHEHNE
TeopeMbl aas1 N = 273, 27=2 2n~1 3 g kauecTBe 6a3bl UCIOIb3yeTCS BbI-
NoJIHeHue TeopeMbl 1isi n = 0, 1, 2. baza MHAYKIIMY IPOBePsIeTCs YUCTIEHHO.

4. N — cocTaBHOe YUCJIO, He BJAI0IIeecs CTelleHbIo IPOoCcToro unciaa. Kaxknoe
Takoe /N MOSKHO IIPeJICTAaBUTH B BUJIE IPOU3BEIEHNs 1. CTENIEHEN HEOUHA-
KOBBIX IPOCTBIX YncelI. 11 foKa3aTe/IbCTBa IPUMEHEH METOI UHAYKIIUY,
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IJle TPeIoJaraeTcsi, YTo TeopeMa BbIoJTHeHa AJ1s1 N, ABJISIOIIErocs Ipo-

u3BelleHuEeM 1 — 1 cTeneHell HEOJJMHAKOBBIX IIPOCTHIX YUCEJI, A B KAYECTBE

0asbl B3SITO BBINIOJTHEHUE TEOPEMBI IJIsI . = 1.

Jloka3aTeJIbCTBO TEOPEMBI IJISI CJIy4Yaes 2, 3, 4, To ecThb Korga N He SIBJISIETCS
IIPOCTBIM, COCTaBJISIET OCHOBHOE COMlepIKaHUe JOKIaa.

Brisia o6HApYsKeHa, HO He JoKa3aHa, 0oJiee 0011asi 3aKOHOMEPHOCTh, YacCT-
HBIM CJTy4aeM KOTOPO# SBJISIETCS YTBEPIKIEHNE 3TOM TEOPEMBI JJIs TPOU3BOJIb-
Horo N ipud > 3:

I'mnore3a 1 /14 nponu3BobHbIX N, m npud > p+ 1
Vk € Z(N) CNd'm.(k) =0 (mod N)

Taknm 06pa3oM, ycTaHABINBAETCsI TUIIOTETUYECKAS CBSI3b MEK/Ty BBIJI€JIEHHBIM
TIOJIOKEHNEM TPEXMEPHOU PEIIETKY U TeM (PAKTOM, YTO IIPU MOJICUETE Y3JIOB
pemtéTKY CYMMUPYIOTCSI MUMEHHO BTOpbIe CTelleH! UX KOOpJUHaT.

O606méHHas rumnoresa OblyIa IpOBepeHa YUCIEHHO s cirydaeBm < 8, N <
1000; m < 35, N < 300; m < 100, N < 37. Pe3ysnbraT: KOHTPIpUMEPOB He
obHapY’KeHO.

Ecsm ke d < m, To cymiecTByeT N, IJIsI KOTOPOT'O YTBEPSKAEHNE TEOPEMBI
He BBIIIOJIHSAETCS. ITO yTBEPsKIeHNe ObLIO0 YUCIeHHO IIpoBepeHo 1y m < 100.
KoHTprnpumepoB Tak)xe He 00HAPY;KEHO.

B KTII Ha pemiéTke 3T0i1 TeOpeMe COOTBETCTBYeT IIepeHOPMUPOBKA B HYJIb
9HEpryUy BaKkyyMa, IpobOeraroIell TUCKpeTHbIE 3HAYeHNsI, Ha TPEXMEPHOU NM-
MyJIECHOM pemméTke. [ToCKoJIbKY TepeHOpPMUPOBKA ITPOUCXOIUT JAJIsI TPOM3BOJIb-
HOTO pa3Mepa pemnIéTKy, eCTb OCHOBAHUsI IT0JIaraTb BO3MOYKHOCTD IlepeHoca
IIOCTPOEHHOH TeOPETUKO-4YMCJIOBOM NEPEHOPMUPOBKU Ha HETPEPBIBHBIHN CIIy-
yaii c IOMOIIBIO IpeesibHOro nepexona N — oco.

JIuteparypa
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BeiecTBeHHbIE I1OJIIOCHI TPEThero TpaHcueHaenTa [Ieniiese

Hosoxkuienos B. 10.

Hucrutyr maremaruku ¢ BI] YOUI] PAH

novikb3@mail.ru

PaccmarpuBaercs crienuajibHOe TpeThe ypaBHeHue [lensese

4
a2 u +4u3—a, N = const. (1)

— ) —=—+4
dx xcla:+

2

d*u 1<du> 1du (N-1u?>-N
BeriecTBeHHbBIE pelieHus ypaBHeHus (1) IpUMEHSIOTCS BO MHOTHX MOMEJISAX
MareMaTU4ecKol (pM3UKM, TAKUX Kak MoJeJib ['pocca-Burrena-Banbu, Momesb
[Tonmatiepa-Pemyke 1 Mozesu pacipeiesieHNs OCHUIINPYIOIINX MOJT B CUJIBHO
neMIipoBaHHOM KOHTaKTe J[Ixo3edcona [2]. Bce Takue perenns Ha 1moJio-
SKUTEJIBHOU ITOJTyOCH MMEIOT IIAIKYIO OCIU/IMPYIONTYI0 aCUMIITOTHUKY B HyJIE
U [0CJIEeI0BATEIbHOCTD MOJIIOCOB B TOUKAX & = aj, HAYUHAsI C HEKOTOPOI'o
T =ag > 0.

1 2(N-1)£1

u(x) = i2($—ak) - day +bp(z —a) + O(z — a)?, = — ag. (2)

AcuMITOTHKA MTOJIOCOB MTPHU OOJIBINUX & IPU (PUKCUPOBAHHOM [N BBIYHCIISIETCS
METOI0M M30MOHOIPOMHBIX nedopmariuii [1]

N+1 1
akzw<k’+;—> —51n877k:—|—0(1), k— 400

B pabore paccmarpuBaeTcsi Ipyroil acCMMITOTHYeCKUi ipenest, N — oo, k =
O(1). duist aT0#1 1leu IpUMeHsieTCsI cileqylolee npeobpasoBanue bexsynna

() = v'(x) N
dv(z) (v(z) —1) 2zv()’

rze y(x) ABJsieTcs pellieHreM ypaBHeHus1 [lenese V

1 1 1 ! NZy—1
v”:2( +)(v’)2—2—8v(v—1)+2x2v . (3)

v—1 v v
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ITpu 6osbiux N ypaBHeHue (2) UMeeT IIaKoe peleHne Buaa
v(z) = (1 + oy (22) + ﬁYN(2x)]2) (1+O(N"Y),

roe Jy, Yy - dyrknuu Beccesist co snaukom N. Torja comracHo mpeobpa3oBa-
HUI0 BekyH1a B OKPECTHOCTH TOJTIOCA & = @ UMEEM

~ laJy(2z) + BY}(2%)
- 2aJn(27) + BYN(22)

1 2N -1

u(z) 2(x —a) 4a

+O(N7Y) =

+bo(zx—a)+...

[Tpou3BOJIBHBIE TOCTOSTHHBIE (v U 3 OTIPEIEJISIIOTCS U3 alredOpanyecKkux ypaBHe-
HUAH

aJn(2a) + BYn(2a) =0,

a — . 4
aJ'n(2a) + BY" n(2a) = f%\/lf%+% (4)

Teopema IlycTh BelljecTBeHHOE pellleHHe ypaBHeHHA (1) uMeer 1oJIroc (2), Torga
OHO HMeeT CUeTHBIH Hab0p BeI[eCTBEHHBIX ITOJIIOCOB, KOTOpbIe Ipu N — 0O COB-
nagaror ¢ Hymamu pyurnun Beccesis aJy (2x) + YN (2x), rge koagpunmeHTs!
«, [} ompeneIaoTCA U3 ypaBHEHHH (4).

o " v e oo N=80

> .
< . \ o * ‘ . BblueT =+
o © o o =t3
) «© o
® © o
, o» | o 1
P -« ° ® BblUET= —5
® oel © 2
» © °° 5 o ®
© .
cad @ ol
.® lo s % °0©
so®® ® m» 08 e OO % o o o @
. . - 5 . .
20 30 40 50 60 70
PO®® @ > s se e 0l * O o o
I o
® .
Coag o . ¢ oo
®© o - o
® ce o o
LIS oo o
Oe o, . .
. . | °
LIS © o °
[ % ! o
o o ol 5, .
Y / .

/x/~/l\l/2

Puc. 1: PaCHpe)IeJIeHI/Ie MOJII0COB B KOMILJIEKCHOI IIJIOCKOCTH. Bee BEIIIECTBEH-
HbIE ITOJTI0OCBI HAXOOATCA CIIpaBa OT TOYKU T — N/2
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O cBoOliCTBE MOHOTOHHOCTH pellIeHUH CHCTeM OTHOCHUTEJIBHO
HaYaJIbHbBIX YCJIOBHH

Poguna JI. U.

HaHI/IOHaJIBHBIPUI HccJsiegoBarejib CKHUH TeXHOJIOTHYECKHH YHUBEpcurer
«MHUCuC»

LRodina67@mail.ru

PaccMoTpuM aBTOHOMHYIO cucTeMy qudepeHIinaabHbIX ypaBHeHUN
&= f(z), =eR" (1)

B IIPEAIOJIOMKEHNH, YTO BeKTOp-byHKIMA f(x) U ee mpousBoaHsele 0 f;/0x;
(4, = 1,...,n) HenpepbiBHBL. O603HAYUM 4Yepes (¢, x) pelleHne JaHHOM
CUCTEMBI, VOBJIETBOPSIOIIEee HaYaIbHOMY yCaoBuio ¢(0, z) = x. [lyist pemre-
HUST MHOTHX IPUKJIAHBIX 33aY JKeJ1aTeIbHO, YTOObI peleHns: CUCTeMBbI (1)
o6J1afany cJIeayIoIIuM CBOHCTBOM MOHOTOHHOCTH OTHOCUTEJIBHO Ha4a/IbHBIX
YCJIOBUH:

Ceoiicreo 1. ITycrs 2(0) € R™, y(0) € R™ takue, 9ro z(0) < y(0). Torga

(t,2(0)) < ¢(t,4(0), t=0.

31ech U jajiee HEPAaBEHCTBO © < Y/, 3alIMCAHHOE [IJISI BEKTOPOB & € R,
y € R", 6yaeM IOHUMAaTh, Kak HEpaBeHCTBA T; < ¥, = 1,...,n.
PaccMoTpuM cHavasa IMHEHHYIO cucteMy audepeHnaabHbIX YpaBHEHUH

T = Ax,
e A — MOCTOsIHHAS MaTPHIIA PA3MEPOB 7 X 1. U3BECTHO, UTO pelneHue TaHHoH
CHCTEMBI MOKHO 3anucaTh B BUje ¢(t, z) = ez, rie At — marpuunas skc-

noHeHTa. Marpuiia A Ha3bIBAeTCsl IKCIIOHEHI[HAJIFHO HEOTPHUIIATE/TEHOH, €CITN
et >0 st Bcex t > 0. Marpuria A HasbiBaeTcsi marpuiler Meriiepa, ecim
ee 3JIeMEHTHI YI0BJIeTBOPAIOT HepaBeHCTBaM a;; > 0mpui # j,¢ = 1,...,n,
cm. [1].

Jlemma 1 (cm. [1; 2]). Marpuija A ABJIA€TCA 9KCIIOHEHIJHAIBHO HEOTPHIIA-
TeJIbHOH TOIAa H TOJIBKO TOI/a, KOIja OHA ABJIAETCA MaTpuiled MeTrjiepa.
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13 sieMMblI 1 04eBUIHO, CIeyeT, uTo ecin A — matpuiia Metigiepau z < v,
10 (t, ) = eMta < ey = p(t,y) nasa moboro t > 0.

BepHeMcs K pacCMOTPEHMIO HEJIMHEHHOH crucTeMbl (1). @yHKIuHA f; B Ipa-
BOM YaCTH 3TO CUCTEMBI MOT'YT 3aBHCETH HE OT BCEX IePEMEHHbIX, B YaCTHOCTH,
OHU MOTYT OBITh TOCTOSTHHBIMU.

Ycaosue 1. Ilycte MHOKECTBO D C R™ 10J10KHTE/IEHO HHBAPHAHTHO OTHO-
curesbHO cucteMsl (1). Kaxknas u3 yHkuii f; ABaseTcsa BO3pacTaroiier Ha
MHO)ecTBe D 110 BceM iepeMeHHbBIM, OT KOTOPBIX OHAa ABHBIM 00pa3oM 3aBHCHT,
3a HCKJIIOY€HHUEM MMEPEMEHHOH T, 1 = 1,...,n.

Jloka3aHo, 9YTO CBOMCTBO 1 BBINOJHEHO AJ15 J1I000T0 Trd dhepeHnaabHOro
ypaBHenusi & = f(z). iMeeT MecCTO CJiefyioliee yTBEPIKAeHNUE.

Teopema 1. Ilycrs BbmoJsiHeHo yciaoBue 1. Torna, ecom giax(0) € D, y(0) €
D umeer mecro Hepasernctso x(0) < y(0), To p(t,2(0)) < ¢(t,y(0)) a1 Bcex
t>0.

OtmeTuM, 4T0 ecyu cucreMa (1) TMHeHHAas! U BBIITOJIHEHO YCJIOBHE 1, TO
Marpuna A JaHHOH! CUCTEMBI SBJISIETCS MaTpuLieid Meriyiepa.

PaccMmarpurBaeTcs Takske OfHa U3 3a1a4, s ICCJIeNOBAaHUsI KOTOPOU IIPH-
MeHsIeTCsI TeopeMa 1 — 3To 3a/1aya OLleHKU CpeiHell BpeMeHHO BBITObI AJ1S
CHCTEM CO CJIy4YailHbIMY IIapaMeTpaMu, KOTOpasi BBIIOJIHEHA C BEPOATHOCTHIO
eIUHUIA.
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00 nHTerpaJHLHBIX HHBAapHAHTAX ypaBHeHU# Bupkroda aisa
0eCKOHEeYHOMEPHBIX CHCTEM
CaBumH B. M.'*, Upns ®. T.1**
! Poccurickuii yauBepcurer Apy»x0bI HaponoB uMeHH IlaTpuca JIlyMyMObI
" savchin-vm@rudn.ru

" tr.phuoctoan@gmail.com

1. IlocranoBka 3agad4. [IycTh cocTossHIE 0€CKOHEYHOMEPHOU IOTEHIIHATIb-
HOW CHCTEMBI onpesiensiercss Bekrop-pynkuueit u(z,t) = (ul(z,t), u?(x,t),
L u?(z,1)), (z,t) € Qr = Q x (0,T), Q — orpanunvennas 06;1actb us R™

C KYCOYHO IIaIKO¥ rpanutieit 02.

2n

[IpeAImoIoKHUM, UYTO IIPH ITOM JIeHCTBHE 0 [aMUJIBTOHY UMEET BT
Z R; (z,t,us) ul — B (ug) | dzdt,
= (1)

o

= (0417012,"' ,Oém,)7‘06| = Zaiv‘a| 20757
=1

rne R; = R; (z,t,u,), B = B (u,) — 3agaHHbIe [OCTATOYHO [IagKue (PyHKINH,
. out . 15 D oledy
ut = ——,1=1,2n,uq = Dou = .
e @ (0x1)™" (022)*% -+ (D)™™

K3
Lot
Bynem paccmarpuBarh pyHKIMOHA (1) Ha MHOKECTBE

D(N) = {ueU: U Ul € U = O (Qx [0,T)) s |, =

; auui
wl_p =1 @), 5

—wf,(:c,t),i—1,2n,|1/|—0,s—1},

I'r

me Q = 0QUQ, Ty = 9N x (0,T), n, — BHEIHAS HOpMAJTL K 0€); ©f), !,
! (z,t) — 3agaHHbIE OCTATOYHO MIAKVE (DYHKIIUH.
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2. CucreMa ypaBHEHHUH ABHKEHU .
Teopema 1. Sxcrpemastu ¢pyHrHoHa A (1) ABIAIOTCA peleHHsAMH CHCTEMA

ypaBHEHHH

2n s s
_ el (@ IR\ _OR; p_ ORi _
Wy 3| 0 () pe () 5 -

k=118=0 | |al=0

-3 (- Do =0,i=T72n,
|a|=0

e

<g) _ <gi> (%i) (gZ) cecmmVi € {1,2,--- ,m} 1oy > By,

0,ecmmdi € {1,2,--- ,m} : a; < s,

() = e
Bi Bil (i — B;)!
OtMeTHnM, 4TO U3 (2) KaK YaCTHLIA CJIydyail CJIeqyIoT ypaBHeHUsI BUpKTo-

da[l1;2].

3. UHTerpajgbpHble HHBapHaHTHL IIyctb u = u (A\;z,t), A € A = [0,1] —
NIPOU3BOJIBHOE OJHOIIapaMeTPUYECKOE MHOKECTBO 371eMeHTOB U3 U HellpephIB-
Ho tuddepeHnpyemMbIx 1o A. Ero MokHO paccmarpuBarh Kak kKpusyio C' B U.
Bynem cuutars, uyto u (0; z,t) = u (1;2,t) ¥ (z,t) € Qr, T. €. KpUBasg 3aMKHYyTa.

Az, t
BBeneM obo3HaueHune du = Md)\.

Teopema 2. Cucrema ypaBHeHuE (2) HMeeT HHTerpaibHbIH HHBapHUAHT I1€P-

BOIO
mopsaKa BUAa

2n 2n
//ZRiéuidx:y{/ZRiéuidx.
A o =1 c o =1

4. 3axarouenue. 113 BapuallMOHHOI0 IPUHIUIIA C UCII0/Ib30BAHKUEM 3aJaHHOTO
JIerlcTBUA 1Mo [aMUIIBTOHY TOJY4€eHEI BECbMa O0IIe YPaBHEHUS TBUKEHUS
0ecKOHEeYHOMEPHBIX crucTeM. Kak 4yacTHBIH ciIy4yail U3 HUX C/IeAyIOT N3BeCTHbIE
ypaBHeHUs bupkroda. Haiien muHeiHbIN HHTerpaabHbINA HHBAPUAHT I1EPBOTO

TopsiJKa.
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OoOparHsble 3aga4u aTMOC(EPHOTO ITEKTPUIECTBA
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HccieqoBaHue MIMPOKOTO KJIacca 3JIEKTPOMArHUTHBIX ITPOIIECCOB B aTMO-
cdepe 3eM BO3MOKHO B paMKax KBa3UCTAIIMOHAPHBIX TPUOJIMKEHUH 151
CHCTeMbI ypaBHeHU MakcBeJa [5]. B 4acTHOCTH, HEPEJTATUBUCTCKOE JIEK-
TpUYecKoe NpuOIMKEHNE TPUBOAUT K YPAaBHEHUIO WIOOATBLHOM 3JIeKTpUYe-
cKkoii nenu [4; 8]. JI71 M3y4eHUs 9JIEeKTPOMAarHUTHBIX TIOJIEH B BEPXHUX CJIOSX
arMocdepbl MOKET UCII0J/IB30BAThCS HEPEIATUBUCTCKOE MarHUTHOE TpUOJIH-
skenwe [1; 6]. Bojiee TOJTHO ¥ TOYHO OMKUCATh pacCMaTpHUBaeMbIe SIBJIEHHS B at-
Mocdepe B I1eJI0M IT03BOJIsIET KBa3UCTAIIMOHAPHOE TPUOJIM)KEHNE, OCHOBAHHOE
Ha COXpaHEHNH B CUCTEME YpPaBHEHN MaKcBeJIa NOTeHIIMAILHON YacTH TOKa
cMmemenus [2; 3; 7; 9].

B pabore 00CyskIar0TCS TOCTAHOBKY 00paTHBIX 3a/1a4 (UHATBHOTO U T'pa-
HUYHOTO HAOJIIOIEHUs IJIsI CUCTEMBI YpaBHEHUU MakcBesjia B Pa3/IMIHbBIX
KBa3UCTAIMOHAPHBIX MPUOJIMKEHUSX B HEOMHOPOTHBIX CPE/IaXx.
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HcciiegoBaHne acMMIOTOTHK penieHU U@ depeHnnaabHbIX
ypaBHeHHUH 2-T0 NopAAKa C MepoMOpP(PHBIMHU
ko3¢ unmeHTaMmn

Yon II1.!, Koposuna M. B.1*
! MockoBckmii rocygapcrBenHbIi yHHBepcuTeT uMeHH M. B. JloMoHOCOBa

" st02210136@gse.cs.msu.ru

B pa6ore paccmorpuM auddepeHiinaabHOe ypaBHEHHE 2-T0 MOPsiIKa C Up-
peryssipHoii ocobeHHOCThIO (n > 2)

u'"(r) + 62 ()’ (r) + b (r)u(r) = 0, (1)

anecs b°(r), bt (r)-mepomopdHbIe pyHKIMK. Bes orpanndenus o61HOCTH Oy-
JIEM CYMTATh, YTO OHU MMEIOT 0COOGEHHOCTH B HyJIe. B pabore [1] mokasaHo, 4to
ypaBHeHnue (1) MOKeT ObITh TPUBEIEHO K BUIY

(—r"$>2u+a1(r) (-Tnci> u+ ao(r)u =0, (2)

e ay(r),ao(r) - MepomopdHbie GyHKIWMH (n > 2).

B pa6orax [2—5] 66110 10Ka3aHO, YTO ecJiu moJuHoM H(p) umeer nmpocThie
KOPHU B TOYKAX D1,...,Pm, TOTA ACUMIITOTHKA PelIeHs B IPOCTPAHCTBe (QYHK-
it (n — 1) 9KCIOHEHIMAIBLHOTO pOoCcTa ypaBHeHus1 H (—r”%, r) u = (0 umeer

BU/I:
m oo

’U,('I') ~ Z e(%-&-zfgf %)To-j Z bg?"i, (3)

j=1 =0

3/1€Ch YHCJIA 0} U \;, 4 b] — HEKOTOPBIE YUCIOBbIE KO3 PUIMEHTEI.
[lesb maHHOM pabOTHI — HAUTH KO3(P(PUIIMEHTHI B aCUMIITOTUYECKUX PA3JI0-
SKEHUSIX PelleHu 1J1s1 ypaBHenus (2).
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3anuieM ypaBHeHue (2) B BUje:
d\? d
(—’I“ dr) U+ a(l) (—’r‘ndT> u + a(l)ru -+ G%TQU 4+t a371T7l_1u—|—

[ral(r) (-WjT) + r”ao(r)} u=0.

OCHOBHOI cumBoJ umeer Bug Hy(p) = p*> + alp =p (p + af).
I[IpeaoI0KHM, 9TO YPaBHEHHUH HMeeT IIPOCThIe KOPHU. JTO 3HAYUT, YTO

ad # 0.

(4)

Teopema 2 IIycTbn — 9eTHOE YHCI0. ACHMIITOTHYECKHH 9/I€H PEIIeHHs YPaBHe-
HUA (2), COOTBETCTBYIOIHE HYJIEBOMY KOPHIO OCHOBHOI'O CHMBOJIA IIPH YCJOBUH
a # 0 umeer Bujg

7‘6€< = 1‘1)Zb7’

Yucmal;,i = 1,2,...,n—2 0AHO3HAYHO ONIPENETAIOTCA H3 CHCTEMbI yPDABHEHHH

a(l))\l(n —-2)= fa(l),

M2(n—2)% + a?)\g(n -3) = —ag,

Me2(n—k —1)2 4+ a®dop(n — 2k — 1) = —a2k,

aS oy (n — 2k — 2) = —a2F !

i

2
n—2
)\n222(n— 5 —1) +a1)\n2——a6’ 2,

a 1
_ %
0=—5%
aj
Hycts n — HeyeTHOE yrcaa. Koagpgunmenrsr A1, . . ., A\, _o, onpenensiorcsa
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U3 CHCTeMbI yPaBHEHHH

a(lJ)\l(n —-2)= —a(l)7

M2(n—2)2 +alxo(n —3) = —ad,

Me2(n—k —1)2 4+ a®dop(n — 2k — 1) = —a2F,

0 _ 2k+1
ajAoks1(n — 2k —2) = —ag ",
0 n—2
A Ap—2 = —agy °.

_ 2 _
)\71_12(n—w—1) +ant
5= : .
= o
1

Ire’y ;2 bir’ — cOOTBETCTBYIOIHIT ACHMITOTHIECKHI DA,

YToObI IIOCTPOUTH aCUMIITOTHUKY, COOTBETCTBYIOIITYI0O KOPDHIO OCHOBHOTO

g
cumBosia p = —ai # 0 cmemaem sameny: u(r) = er-Tug(r),\g = —al, MbI
HOJTYYHM:

(rni) o) + (308 — 20a0) (w(i) o (r) + abruo(r) + a2ruo(r)
)

- [m?)(r) (—r"i) +ral” (r)} uo(r) = 0.
(5)

Hopblit ocHoBHO# cumBost Hy(p) = p? + (3al — 2nal) p. To ects KOpeHsb
OCHOBHOTO CMBOJIA C TIOMOIIBIO 9KCIIOHEHI[NAIBHOM 3aMeHBI CIBUHYT B HOJIb.
OcrasbHbIe pacyeThl aHAJIOTUIHBI IPEIBIAYIIEMY CayJaro, rae p = 0.

Iycts Temeps af = 0. B aTOM cilyuae KOpeHb ypaBHEHHUSI KPATHBIA M ypaBHE-
Hue (2) IPUBOIUTCS K BUIY

n d ? ki+1 1 n d ko+1 0
(—r dr) u+r T ap(r) | —r o) et ag(r)u =0, (6)



p = 0 UMeeT KpaTHOCTB 2.

Teopema 3 IIyctp k1 + 1 # % TOIAa CymjecTByeT Takoe yucjao x > ( ra-
KOe, 4T0 ypaBHeHHe C KPaTHbLIM KOPHEM B HyJIe IIPH JeJIeHUH Ha 2% CBONUTCA
JIH60 Kk ypaBHeHHI0 PyKCOBa THIIA, THOO K YPABHEHHIO C TPOCTHIMU KOPHAMHU
OCHOBHOT'O CHMBOJIA.

Iycts ky +1 = 5 < n— 1, rorpamonoxum z = k; + 1 = ¥t Ocnosnoit
cumBos pased Hy(p) = p? + a,l€1 p+ ago. EcJiv 9TOT MHOTOYJIEH MMEET KPaTHBIi
KOpEHb, TO CABHHYB €r0 B HOJIb CBEJIEM ITOCJIEIHEE YPABHEHNE K YPABHEHUIO
BHja (6) ¢ BRIPOKIEHUEM MOpsIAKan — r, tnex = k; + 1 = %
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