Исследователи ВШЭ научили нейросети различать происхождение из генетически близких популяций

В Институте искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ предложили новый подход, основанный на современных методах машинного обучения, для определения генетического происхождения человека. Графовые нейросети позволяют с высокой точностью различать даже очень близкие популяции.
Генетический анализ — услуга, ставшая популярной в последние 10–15 лет не только как инструмент медицинской диагностики, но и как возможность узнать больше о своем происхождении. Анализ ДНК позволяет оценить этнический состав, определить, где жили и куда переселялись предки, найти количество мутаций неандертальца в геноме.
Это стало доступно благодаря развитию современных технологий — генотипирования, систем хранения и обработки данных, машинного обучения — и значительного снижения их стоимости. Но при этом существующие методы тестирования не позволяют разделить генетически близкие, родственные популяции, которые долгое время жили на смежных территориях.
Исследователи Института ИИ и цифровых наук НИУ ВШЭ разработали метод, позволяющий различать происхождение людей из близкородственных популяций. В основе технологии — графовые нейронные сети. Алгоритм опирается не на саму последовательность ДНК, а на графы, которые обозначают генетические связи между людьми с общими участками генома. Такие участки отражают степень родства между людьми и указывают на то, сколько поколений назад у них были общие предки. Чем больше совпадений, тем ближе люди по происхождению. Вершины в модели соответствуют человеку, а ребра отражают степень родства.
Метод протестировали на данных из разных регионов. Особенно интересными оказались результаты по населению Восточно-Европейской равнины, по которым уже собрана большая база данных. Графовая нейросеть смогла точно определить популяционную принадлежность представителей генетически очень близких народов.
Алексей Шмелев
«Существующие методы генетического анализа решают иную задачу: они определяют принадлежность к крупным изолированным популяциям, например определяют, у кого в роду были французы, у кого немцы, у кого англичане. Наш метод позволяет работать с близкородственными популяциями, что особенно актуально для России, исторически многонациональной страны», — говорит Алексей Шмелев, один из авторов работы, стажер-исследователь Международной лаборатории статистической и вычислительной геномики Института ИИ и цифровых наук ФКН НИУ ВШЭ.
В дальнейшем исследователи планируют научить нейросеть предсказывать процентное соотношение различных популяций в геноме.
Исследователи зарегистрировали свою разработку под названием AncestryGNN — «Нейросетевое предсказание популяционной принадлежности по общим сегментам генома».
Владимир Щур
Как отметил заведующий Международной лабораторией статистической и вычислительной геномики Института ИИ и цифровых наук ФКН НИУ ВШЭ Владимир Щур, предложенный метод открывает новые перспективы для более точного определения популяционной истории людей и может применяться в генеалогических исследованиях и антропологии.
Работы выполнены по гранту Правительства Российской Федерации в рамках федерального проекта «Искусственный интеллект».
Вам также может быть интересно:
Экономисты ВШЭ выяснили, что ИИ слишком хорошо думает о людях
Ученые из НИУ ВШЭ выяснили, что современные ИИ-модели, включая ChatGPT и Claude, в играх на стратегическое мышление вроде «конкурса красоты» Кейнса переоценивают уровень рациональности своих оппонентов, будь то студенты-первокурсники или опытные ученые. Модели стараются предсказать поведение людей, но в итоге играют «слишком умно» и проигрывают, потому что приписывают людям больше логики, чем те демонстрируют на деле. Исследование опубликовано в Journal of Economic Behavior & Organization.
В Вышке создан Институт робототехнических систем
Решение об этом принял Ученый совет НИУ ВШЭ. У нового института будет мощная фундаментальная база, он будет сотрудничать с другими профильными подразделениями, вовлекать студентов и аспирантов в исследования и разработки. К каким практическим результатам приведет работа института и как планируется организовать взаимодействие с его индустриальным партнером, «Вышке.Главное» рассказал первый проректор НИУ ВШЭ, директор Института статистических исследований и экономики знаний Леонид Гохберг.
Вышка Онлайн представила документальный фильм о влиянии ИИ на нашу жизнь
27 ноября на всех онлайн-площадках Вышки Онлайн состоялась премьера документального фильма «После промпта» от онлайн-кампуса НИУ ВШЭ. Его авторы исследуют, как искусственный интеллект меняет работу, карьерные траектории и профессиональное развитие специалистов. Это первый видеопроект, полностью реализованный командой онлайн-кампуса НИУ ВШЭ совместно с приглашенным режиссером Ольгой Науменко.
Технологический прорыв: исследования Института ИИ и цифровых наук отмечены на AI Journey 2025
Ученые Института искусственного интеллекта и цифровых наук факультета компьютерных наук ВШЭ в рамках Международной конференции AI Journey 2025 представили передовые ИИ-исследования с высоким уровнем научной новизны и практической применимости. Научное решение заведующего Научно-учебной лабораторией матричных и тензорных методов в машинном обучении Максима Рахубы получило премию «Лидеры ИИ — 2025». Заведующий Центром глубинного обучения и байесовских методов Айбек Аланов — среди финалистов премии.
НИУ ВШЭ стал лидером рейтинга вузов — участников программы «Приоритет-2030»
Министерство науки и высшего образования РФ опубликовало обновленный список участников программы «Приоритет-2030». Всего поддержку в этом году получат 106 университетов. Высшая школа экономики вошла в первую группу и возглавила рейтинг вузов.
«Сегодня мы живем в эпохе “рутинной новизны”»
В НИУ ВШЭ продолжается реализация стратегического технологического проекта (СТП) «Национальный центр социально-экономического и научно-технологического прогнозирования». Новостная служба «Вышка.Главное» рассказывает о том, как в систему прогнозирования вписываются культура и общественные ценности и как на них влияет искусственный интеллект.
НИУ ВШЭ представил новый инструмент для оценки потенциальных рисков для территорий
В Высшей школе экономики прошла презентация доклада по финансовым решениям для климатической адаптации в России. Учитывая, что, по оценкам, каждый градус повышения среднегодовой температуры может привести к негативному эффекту в размере до 3 трлн рублей ежегодно, меры по адаптации сейчас необходимы, считают эксперты. На презентации ученые НИУ ВШЭ представили цифровой инструмент, который позволяет построить климатический риск-профиль территорий.
«ИИ позволяет людям без опыта разработки прототипировать решения, упрощающие их деятельность»
28 октября завершилось обучение в рамках третьего потока программы «Искусственный интеллект в социальной сфере». Слушатели представили и защитили свои проекты. В рамках освоенного курса преподаватели помогли им найти перспективные области применения ИИ для эффективной работы в социальной сфере и обучили практическому применению инструментов ИИ.
НИУ ВШЭ представил рейтинг регионов России по необходимости адаптации к изменению климата
В докладе Высшей школы экономики оценены шесть ключевых климатических рисков для страны: деградация вечной мерзлоты, лесные пожары, засухи, волны тепла, экстремальные осадки и водный стресс. Рейтинг позволяет оценить риски для каждого конкретного региона и скорректировать планы адаптации.
Ошибки, которые всё объясняют: ученые обсудили будущее психолингвистики
Мировая лингвистика сегодня переживает «многоязычную революцию»: эпоха англоязычного доминирования в когнитивных науках подходит к концу, все чаще исследователи изучают многообразие языков мира. Более того, мультилингвизм из экзотики становится нормой, что кардинально меняет представления о когнитивных возможностях человека. В Вышке обсудили будущее развитие экспериментальной лингвистики.


